The post 業(yè)界首次!華為5G實(shí)現(xiàn)“跨站”規(guī)模商用:訂單翻倍、聯(lián)通立功 appeared first on 東莞市皇捷通訊科技有限公司.
]]>任何一項(xiàng)新生的通信技術(shù),從誕生到成熟,都要經(jīng)歷制定標(biāo)準(zhǔn)、研制試用、商用推廣幾個(gè)階段。從5G問世以來,伴隨著5G的另一個(gè)熱詞——5G超級(jí)上行也成了大家的關(guān)注焦點(diǎn)。經(jīng)歷了三年多時(shí)間,5G超級(jí)上行的規(guī)模商用終于來了。
據(jù)華為消息,業(yè)界首次5G超級(jí)上行“跨站”靈活配對(duì)技術(shù),在近日終于實(shí)現(xiàn)了全網(wǎng)商用。廣州聯(lián)通聯(lián)合華為一起,累積將近3000個(gè)站點(diǎn)開通了5G超級(jí)上行,這樣一來,5G超級(jí)上行的生效用戶比起傳統(tǒng)方式又增加了一倍。
那么,什么是5G上行呢?
想理解這個(gè)問題,必須先明白什么是上行。大家都知道,從2G到4G,我們對(duì)于網(wǎng)絡(luò)的需求,更多的是從網(wǎng)站下載內(nèi)容,這就是對(duì)網(wǎng)絡(luò)下行的需求。但是從2019年末,受一些原因影響,大家長(zhǎng)時(shí)間居家,網(wǎng)絡(luò)成了聯(lián)絡(luò)人際關(guān)系的主要途徑,在線網(wǎng)課、線上會(huì)議、高清直播都成了人們的迫切需求,而這些都需要能夠?qū)崟r(shí)上傳高清視頻。有數(shù)據(jù)顯示,在那段時(shí)間里,全球移動(dòng)網(wǎng)絡(luò)增長(zhǎng)了40%的上行流量。
如果說,這是上行流量需求剛剛嶄露頭角,那接下來的一段時(shí)間里,沉浸式視頻、交互式視頻的流行,把人們對(duì)上行流量的需求推到了一個(gè)新的高峰。這也是上行流量第一次在移動(dòng)網(wǎng)絡(luò)中占據(jù)核心位置。
然而,5G比2G、3G、4G的頻段更高,小區(qū)覆蓋范圍更小。不過,網(wǎng)絡(luò)下行可以通過增加基站的發(fā)射功率,或者采用波束賦形的技術(shù)來彌補(bǔ);但是網(wǎng)絡(luò)上行就沒那么簡(jiǎn)單了,手機(jī)發(fā)射的功率和天線的數(shù)量都成了制約上行的絆腳石。舉個(gè)例子,基站就好比是個(gè)大喇叭在廣播,而手機(jī)好比我們?nèi)税l(fā)聲,一旦手機(jī)和基站離得太遠(yuǎn),就算人喊破喉嚨,基站也很難聽見。
所以,5G超級(jí)上行順勢(shì)而生?;氐絼傞_始的問題,什么是5G超級(jí)上行?
簡(jiǎn)單來說,5G的雙工模式有兩種:一種是上行和下行綁定在同一個(gè)頻段上,我們把這種模式稱作是FDD,也叫雙頻分工,這種模式下,上行下行分別在獨(dú)立的信道上傳輸,就像我們的雙向車道,兩個(gè)方向來車各跑各的,互不干擾。還有一種是上行和下行在同一個(gè)頻率信道上傳輸信號(hào),只不過兩者傳送信號(hào)的時(shí)間不同,這種模式我們稱作是TDD模式。這種模式下,上行和下行就像潮汐車道,大家分時(shí)間跑。
而5G超級(jí)上行,就是TDD和PDD協(xié)同的情況下,低頻高頻互補(bǔ),充分發(fā)揮3.5G大帶寬能力,不僅能夠提高上行的帶寬,還能提升上行的覆蓋范圍。5G超級(jí)上行“跨站”靈活配對(duì)技術(shù),能夠讓TDD小區(qū)和FDD小區(qū)的超級(jí)上行配對(duì)最優(yōu)化,簡(jiǎn)單來說,就是提高了5G網(wǎng)絡(luò)覆蓋和用戶體驗(yàn)感,讓上行用戶的視頻體驗(yàn)達(dá)到1080p和4K水平。
以上就是關(guān)于華為5G在業(yè)內(nèi)首次實(shí)現(xiàn)“跨站”規(guī)模商用的相關(guān)內(nèi)容。對(duì)于華為5G超級(jí)上行,大家有什么想說的?歡迎在評(píng)論區(qū)留言交流。我是柏柏說科技,資深半導(dǎo)體科技愛好者。關(guān)注我,帶你了解更多最新的半導(dǎo)體資訊,學(xué)習(xí)更多有用的半導(dǎo)體知識(shí)。
The post 業(yè)界首次!華為5G實(shí)現(xiàn)“跨站”規(guī)模商用:訂單翻倍、聯(lián)通立功 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 寬頻帶微帶天線技術(shù)知識(shí)梳理 appeared first on 東莞市皇捷通訊科技有限公司.
]]>元電子戰(zhàn)?2022-02-08 00:00
以下文章來源于云腦智庫(kù)?,作者相控陣?yán)蟿?/p>
來源:云腦智庫(kù)
編者注:這是07年參加工作時(shí)學(xué)習(xí)的一本書,當(dāng)時(shí)做了筆記,今天整理出來分享給大家,時(shí)間久遠(yuǎn),不正之處,敬請(qǐng)指正!本學(xué)習(xí)筆記僅對(duì)前三章基本知識(shí)做了整理,后續(xù)應(yīng)用部分,請(qǐng)參考該書籍閱讀!
第一章.緒論1.1微帶天線的歷史和優(yōu)缺點(diǎn)
微帶天線最初作為火箭和導(dǎo)彈上的共形全向天線獲得了應(yīng)用,現(xiàn)在微帶天線廣泛應(yīng)用于大約100MHz~100GHz的寬廣頻域上的大量無線電設(shè)備中,特別是飛行器上和地面便攜設(shè)備中。微帶天線的特征是比通常的微波天線有更多的物理參數(shù),具有任意的幾何形狀和尺寸,有三種基本類型:微帶貼片天線、微帶行波天線和微帶縫隙天線。
和常用的微波天線相比,具有以下優(yōu)點(diǎn):1)體積小、重量輕、低剖面、能與載體共形,并且除了在饋電點(diǎn)處要開出引線外,不破壞載體的機(jī)械結(jié)構(gòu)。2)性能多樣化。設(shè)計(jì)的微帶元最大輻射方向可以在邊射到端射范圍內(nèi)調(diào)整,實(shí)現(xiàn)多種幾何方式,還可以實(shí)現(xiàn)在雙頻或多頻方式下工作3)能夠與有源器件、電路集成為統(tǒng)一的組件,適合大規(guī)模生產(chǎn),簡(jiǎn)化整機(jī)的制作和調(diào)試,大大降低成本
和其它天線相比,其缺點(diǎn)如下:
1)相對(duì)帶寬較窄,特別是諧振式微帶天線(目前已經(jīng)有了一些改進(jìn)方法)2)損耗較大,因此效率較低,特別是行波型微帶天線,在匹配負(fù)載上有較大損耗3)單個(gè)微帶天線的功率容量較小4)介質(zhì)基片對(duì)性能影響較大。由于工藝條件的限制,批量生產(chǎn)的介質(zhì)基片的均勻性和一致性還有欠缺,影響了微帶天線的批產(chǎn)和大型天線陣的構(gòu)建
相對(duì)帶寬較窄一般認(rèn)為是微帶天線的主要缺點(diǎn),單現(xiàn)在采用孔徑耦合的層疊式結(jié)構(gòu)的微帶天線,其阻抗帶寬已經(jīng)達(dá)到69%左右,具有廣闊的應(yīng)用前景,一般而言,它在飛行器上的應(yīng)用處于優(yōu)越地位,如衛(wèi)星通信、導(dǎo)引頭、共形相控陣等,在較低功率的各種軍用民用設(shè)備如醫(yī)用探頭等,由于它可以集成化,使其在毫米波段的優(yōu)勢(shì)更為明顯。
1.2微帶天線的分析設(shè)計(jì)方法
天線分析的基本問題就是求解天線在周圍空間建立的電磁場(chǎng),求得電磁場(chǎng)之后,進(jìn)而得到其方向圖、增益和輸入阻抗等特性指標(biāo)。分析微帶天線的基本理論大致可分為三類。最早出現(xiàn)的也是最簡(jiǎn)單的是傳輸線模型(TLM,Transmission Line Model)理論,主要用于矩形貼片,更嚴(yán)格更有用的是空腔模型理論(CM,Cavity Model),可用于各種規(guī)則貼片(基本限于天線厚度遠(yuǎn)小于波長(zhǎng)的情況)最嚴(yán)格而計(jì)算最復(fù)雜的是積分方程法(IEM,Integral Equation Method),即全波理論(FW,F(xiàn)ull Wave),理論上講,積分方程法可用于各種結(jié)構(gòu)、任意厚度的微帶天線,但要受計(jì)算模型的精度和機(jī)時(shí)的限制。從數(shù)學(xué)處理上看,第一種理論將分析簡(jiǎn)化為一維的傳輸線問題;第二種理論則發(fā)展到基于邊值問題的求解;第三種理論進(jìn)一步可以計(jì)入第三維的變化,不過計(jì)算費(fèi)時(shí)?;诜e分方程的簡(jiǎn)化產(chǎn)生了格林函數(shù)法(GFA,Green’s Function Approach);由空腔模型擴(kuò)展到多端口網(wǎng)絡(luò)法(MNA,Multiport network Approach).
微帶線的傳輸模式是將微帶線看成一種開放線路,因此其電磁場(chǎng)可無限延伸。這樣微帶線的場(chǎng)空間由兩個(gè)不同介電常數(shù)的區(qū)域(空氣和介質(zhì))構(gòu)成,只有填充均勻媒質(zhì)的傳輸線才能傳輸單一的純橫向場(chǎng)-TEM模。由于空氣-介質(zhì)分界面的存在,使得微帶中的傳輸模是具有電場(chǎng)、磁場(chǎng)所有三個(gè)分量(包括縱向分量)的混合模,但在頻率不太高如12GHz以下,基片厚度遠(yuǎn)小于工作波長(zhǎng),能量大部分都集中在導(dǎo)體帶下面的介質(zhì)基片內(nèi),且此區(qū)域的縱向場(chǎng)分量很弱,因此微帶傳輸?shù)闹髂:蚑EM模很相似,稱為準(zhǔn)TEM模。傳輸線法最簡(jiǎn)單,也最為直觀,利用端縫輻射的概念說明輻射的機(jī)理,由于傳輸線模式的限制,其難于應(yīng)用在矩形片以外的情況,對(duì)于矩形片,傳輸線模式相當(dāng)于腔模理論中的基膜。在諧振頻率上,計(jì)算的場(chǎng)分布與實(shí)際很接近,參量計(jì)算合乎工程精度,但失諧大時(shí),相差很大,計(jì)算不再可靠,基本的傳輸線法對(duì)諧振頻率的預(yù)測(cè)是不夠準(zhǔn)確的,利用一些修正方法(如等效伸長(zhǎng))可將誤差減小到1%以內(nèi),如果通過樣品實(shí)測(cè)諧振頻率,然后在調(diào)整,效果更好。
空腔模型理論基于薄微帶天線的假設(shè),將微帶貼片與接地板之間的空間看成是四周為磁臂,上下為電壁的諧振腔(確切的說是漏波空腔)。天線輻射場(chǎng)由空腔四周的等效磁流來得出,天線的輸入阻抗可根據(jù)空腔內(nèi)場(chǎng)和饋源邊界條件來求得。腔模理論特別是多模理論是對(duì)傳輸線法的發(fā)展,能應(yīng)用于范圍更廣的微帶天線,并且由于計(jì)及了高次模,因此算得的阻抗曲線較準(zhǔn),且計(jì)算量不算大,比較適合工程設(shè)計(jì)的需要。但基本的腔模理論同樣要經(jīng)過修正,才能得到較為準(zhǔn)確的結(jié)果。特別是邊界導(dǎo)納的引入,把腔內(nèi)外的電磁問題分成為獨(dú)立的問題,這在理論上是嚴(yán)格的,只是邊界導(dǎo)納的確定很困難,計(jì)算只能是近似的。在腔模理論中,認(rèn)為腔內(nèi)場(chǎng)是二維函數(shù),這在薄基片時(shí)是合理的,而對(duì)于厚基片則將引入誤差。由于微帶天線的目的就是降低拋面高度,因此在大多數(shù)情況下是不成問題的,但在毫米波段就需要另行考慮了。
積分方程法和腔模理論的基本立足點(diǎn)不同,它討論的是開放的空間,是以開放空間的格林函數(shù)為基礎(chǔ),基本方程是嚴(yán)格的,除了少數(shù)例外,通常用矩量法求解。
要得到高增益、掃描波束或波束控制等特性,只有將離散的輻射元組成陣列才有可能,同一陣列中輻射元可以相同也可以不同,在空間可以排成線陣、面陣或立體陣。
1.3?微帶天線的應(yīng)用微帶天線優(yōu)勢(shì)有低剖面、價(jià)格偏移并可制成多功能、可共形的天線;可集成到無線電設(shè)備內(nèi)部,可用于室內(nèi)外,尺寸可大可小,大的微帶天線其長(zhǎng)度可達(dá)十幾米。微帶天線在空間技術(shù)中如X-SAR(X波段合成孔徑雷達(dá))、SIR(航天飛船成像雷達(dá))、海洋衛(wèi)星等以不同的微帶形式完成特定的功能。在可移動(dòng)衛(wèi)星通信中以及內(nèi)部集成的微帶天線在PCS(個(gè)人通信業(yè)務(wù))/蜂窩電話和其它手持便攜式通信設(shè)備中都有廣泛的應(yīng)用。注:便攜式無限通信設(shè)備一般要求天線要小、輕、對(duì)兩個(gè)正交極化靈敏。輻射方向圖在所有主平面上必須是準(zhǔn)各向同性的,并且,在許多應(yīng)用中,需要寬頻帶。人體對(duì)天線的影響以及人體對(duì)天線輻射的吸收都要盡可能的小,此外,總是希望天線集成在印制電路板上或塑料盒里。由此需要使用內(nèi)部集成的天線,例如微帶天線。內(nèi)置天線機(jī)械強(qiáng)度大,不易折斷;不增加設(shè)備的尺寸;使用不需要拉伸,人為影響?。徊⑶沂褂酶咚降姆雷o(hù)技術(shù),可以使天線與人體的作用減到最小。微帶天線能提供50Ω輸入阻抗,因此不需要匹配電路或變換器;比較容易精確制造,可重復(fù)性較好;可通過耦合饋電,天線和RF電路不需要物理連接;較易將發(fā)射和接收信號(hào)頻段分開,因此可以省掉收發(fā)轉(zhuǎn)換開關(guān)或至少使設(shè)計(jì)簡(jiǎn)化;容易制成雙頻段雙極化模式。因此微帶天線是最好的選擇之一。第二章.微帶陣列天線的基本理論
天線是各種無線電設(shè)備必不可少的組成部分,它能有效的、定向的輻射或接收無線電波并通過饋線與收發(fā)系統(tǒng)聯(lián)系起來,起著能量轉(zhuǎn)換作用。
從本質(zhì)上講,微波傳輸線(傳輸微波信息和能量的各種形式的傳輸系統(tǒng)的總稱)是一個(gè)封閉系統(tǒng),基本功能就是傳輸電磁能量,其電磁場(chǎng)被束縛在傳輸線附近而不會(huì)輻射到遙遠(yuǎn)的空間,自身的不連續(xù)性可以用來構(gòu)成各種形式的微波元件。天線是由傳輸線演變而來,但其基本功能是向空間輻射或接收電磁能量,是一個(gè)開放的系統(tǒng)。
不管是線天線還是面天線,其輻射源都是高頻電流元,這是共性。因此討論電流元的輻射場(chǎng)是討論天線問題的出發(fā)點(diǎn)。
要解決天線的兩個(gè)最主要的問題是阻抗特性和方向特性。前者要解決特性和饋線的匹配問題;后者要解決輻射和定向接收問題,亦即解決提高發(fā)射功率或接收機(jī)靈敏度問題。但這一切都要先求出天線在遠(yuǎn)區(qū)的電磁場(chǎng)分布。為此需要求解滿足天線邊界條件的麥克斯韋方程組。嚴(yán)格數(shù)學(xué)求解是很困難的,經(jīng)常采用工程近似的方法進(jìn)行研究,即用某種初始場(chǎng)的近似分布代替真實(shí)的準(zhǔn)確分布來計(jì)算輻射場(chǎng)。這樣可以避免嚴(yán)格的理論求解又可以獲取一定的精確度。
2.1?微帶天線單元結(jié)構(gòu)最簡(jiǎn)單的微帶天線是由貼在帶有金屬底板的介質(zhì)基片上的輻射貼片構(gòu)成。貼片導(dǎo)體通常是銅或金,可采取任意形狀。但通常采用常規(guī)的形狀以簡(jiǎn)化分析和預(yù)期其性能?;慕殡姵?shù)應(yīng)較低,這樣可以增強(qiáng)產(chǎn)生輻射的邊緣場(chǎng)。微帶天線單元/陣列其結(jié)構(gòu)通常都比較簡(jiǎn)單,但電磁場(chǎng)的分析卻很復(fù)雜。一方面,微帶天線的品質(zhì)因數(shù)很高,較難得到精確的阻抗特性;介質(zhì)的各向異性、加載、損耗、表面波效應(yīng)等影響也較嚴(yán)重。另一方面,微帶特性幾何結(jié)構(gòu)多樣(不同貼片單元形狀、饋電方法以及寄生單元或?qū)盈B單元的應(yīng)用,共面饋電網(wǎng)絡(luò)與有源線路的集成等)。微帶特性的分析方法主要分為基于簡(jiǎn)化假設(shè)的近似方法和全波分析方法兩類。全波分析法有更好的適應(yīng)性和更高的精度,但速度較慢。第一類方法包括傳輸線模型、空腔模型和分段模型。該方法講貼片單元當(dāng)作一段傳輸線或是空腔諧振器,簡(jiǎn)化了分析和計(jì)算,提高了速度,物理概念清晰,可以提供設(shè)計(jì)的初始數(shù)據(jù)。2.1.1微帶天線的傳輸線模型??基本假設(shè):1)微帶片和金屬底板構(gòu)成一段微帶傳輸線,傳輸準(zhǔn)TEM波,波的傳輸方向決定于饋電點(diǎn)。線段長(zhǎng)度L≈λg/2,λg為準(zhǔn)TEM波的波長(zhǎng)。場(chǎng)在傳輸方向上是駐波分布,而在垂直方向上是常數(shù)。2)傳輸線的兩個(gè)開口端(始端和末端)等效為兩個(gè)輻射縫,場(chǎng)為W,寬為h,縫口徑場(chǎng)即為傳輸線開口端場(chǎng)強(qiáng)??p平面看作位于微帶片兩端的延伸面上,即是講開口面向上折轉(zhuǎn)90o,而開口場(chǎng)強(qiáng)隨之折轉(zhuǎn)。由上可見當(dāng)L=λg/2時(shí),二縫上切向電場(chǎng)均為x方向,且等幅同相,它們等效為磁流,由于金屬底板的作用,相當(dāng)于有二倍磁流向上半空間輻射??p隙上等效磁流密度為Ms=-2V/hV為傳輸線開口端電壓。
由于縫已經(jīng)放平,在計(jì)算上半空間輻射場(chǎng)時(shí),就可以按照自由空間處理。這是這種方法的方便之處。
圖2.1?傳輸線法物理模型
2.1.2輻射元方向圖
微帶輻射元的方向圖可由其等效磁流元的輻射場(chǎng)得出。
由圖2.1可見,微帶天線的輻射等效為二元縫陣的輻射,并且縫上等效磁流是均勻的,可求出天線的輻射場(chǎng)為:
2.2微帶陣列
微帶天線單元的增益一般只有6~8dB。為獲得更大增益,或?yàn)榱藢?shí)現(xiàn)特定的方向性要求,常采用由微帶輻射元組成的微帶陣列。最簡(jiǎn)單的排陣方式是直線陣。其饋電結(jié)構(gòu)一般采用串饋或并饋。
2.2.1線陣輻射特性
由相同而且取向一致的輻射元組成的陣列方向圖是其輻射元方向圖和陣因子方向圖的乘積(方向圖乘積定理)。陣因子方向圖就是將實(shí)際輻射元用無方向性的點(diǎn)源代替(具有原來的機(jī)理振幅和相位)而形成的陣方向圖。微帶輻射元的方向圖可由其等效磁流元的輻射場(chǎng)得出,這樣就可以求出微帶線陣的的輻射特性。
圖2.2 N元線陣
一般根據(jù)下式進(jìn)行選擇不出現(xiàn)柵瓣的元間距:
2.2.2平面陣天線
如圖2.3所示,矩形平面陣中各單元相同,位于原點(diǎn)的第00號(hào)單元為陣的中心點(diǎn),x方向單元編號(hào)m∈(-M~M),y方向的單元編號(hào)n∈(-N~N),第00號(hào)單元為相位參考點(diǎn),忽略陣中各單元間的互耦影響時(shí),設(shè)各元的激勵(lì)電流為:
由此可見平面陣因子是兩個(gè)線陣因子的乘積,因此可以用線陣方向性分析的結(jié)果分析平面陣的方向性。在x方向線陣形成圍繞x軸的圓錐形波束,y方向形成圍繞y軸的圓錐波束。因此,平面陣因子的主瓣是兩個(gè)線陣圓錐主瓣相交部分的乘積,這就得到了兩個(gè)針狀主瓣,一個(gè)指向z>0空間,另一個(gè)指向z<0空間。在實(shí)際應(yīng)用中,總是選擇陣為單向輻射,即只有z>0空間輻射的針狀主瓣。研究?jī)蓚€(gè)主平面的方向圖特性時(shí):
圖2.3矩形平面陣
2.3電掃描天線???由于天線波束的指向始終與相位波陣面相垂直,因此,只要改變相位波陣面的位置,就能實(shí)現(xiàn)天線波束的掃描。根據(jù)改變相位波陣面的方法不同,波束掃描大致分為三類:1.相位掃描在陣列中每一個(gè)單元都安裝一個(gè)移相器,相移量能在0~2π之間調(diào)整,用電子控制每個(gè)移相器,以達(dá)到快速掃描的目的,即相控陣天線,陣中每個(gè)單元間距為d,波束掃描角為θ0,則相鄰單元之間的相移量為ψ=2πd sinθ0/λ,可見相位掃描具有頻率敏感性,即如果相位不隨頻率變化,則掃描角θ0必與頻率有關(guān),改變頻率也會(huì)改變波束掃描角。2.時(shí)延掃描將相掃天線中的每一個(gè)移相器都換成可變時(shí)間延遲線,則相鄰單元之間的相移量變換為時(shí)間延遲量t=dsinθ0/c,式中c為電磁波在真空中的傳播速度為一常數(shù),由此可知波束掃描角θ0與頻率無關(guān)3.頻率掃描頻掃天線的波束指向就是隨發(fā)射機(jī)振蕩頻率的改變而變化,即波束指向是頻率的函數(shù),而一般的頻掃天線總是與相掃天線結(jié)合應(yīng)用構(gòu)成所謂的三坐標(biāo)雷達(dá),即方位面采用相掃,俯仰面采用頻掃。2.3.1相控陣天線???電掃描天線的典型形式就是相控陣天線。它與傳統(tǒng)的機(jī)械掃描天線相比,具有高增益、大功率、多波束和多功能、高數(shù)據(jù)率、高可靠性和易實(shí)現(xiàn)接收機(jī)自動(dòng)控制等諸多優(yōu)點(diǎn)。???相控陣天線的典型框圖如圖2.4所示:
發(fā)射機(jī)的射頻能量經(jīng)饋電網(wǎng)絡(luò)進(jìn)行功率分配,按預(yù)定比例饋送到陣列中的各個(gè)單元的移相器,經(jīng)適當(dāng)?shù)囊葡嗪笤陴伣o陣列各單元進(jìn)行輻射。波束控制指令信號(hào)輸入計(jì)算機(jī),運(yùn)算后通過移相器控制電路進(jìn)入各單元移相器,分別控制各自的相移量,從而獲得各相鄰單元間所要求的相位差,使天線波束指向預(yù)期方向。
事實(shí)上,如果將n個(gè)完全相同的天線所組成的n元均勻線陣中的每個(gè)天線都帶上一個(gè)可控移相器,則該天線陣就成為一維相控陣天線。
假如單元天線的饋電電流不同相,設(shè)相鄰兩單元的電流間的相移為δ,則當(dāng)改變?chǔ)臅r(shí),波束指向在掃描空間移動(dòng)。設(shè)最大輻射方向發(fā)生在θm0,則有δ=-kdsinθm0。由此,改變相鄰單元之間的相位差δ,就可以改變波束的最大輻射方向θm0,實(shí)現(xiàn)波束掃描。
2.3.2盲點(diǎn)效應(yīng)???在相控陣天線的設(shè)計(jì)中,必須考慮兩個(gè)問題:1)在實(shí)空間不出現(xiàn)柵瓣2)抑制或消除盲點(diǎn)實(shí)踐發(fā)現(xiàn),當(dāng)波束掃描到某一角度θn,天線處于全反射狀態(tài),既不輻射也不接收能量,角θn稱為盲點(diǎn)。從物理本質(zhì)上講,產(chǎn)生盲點(diǎn)的原因有兩個(gè)。一是相控陣中存在高次模和互耦效應(yīng)。高次模發(fā)生在一個(gè)單元,而其它單元都與它們的發(fā)射機(jī)端接。由于互耦效應(yīng),在某些特定掃描角上,被激勵(lì)起的高次模與主模耦合,致使口面場(chǎng)受到抵消。因而不能輻射也不能接收功率。二是漏波的抵消效應(yīng),所謂漏波是指當(dāng)陣列單元輻射時(shí),有一部分沿陣列表面向后泄漏的能量,這個(gè)漏波在這里的無源端接的單元上也會(huì)產(chǎn)生輻射波,于是原始的輻射波與漏波產(chǎn)生的輻射波在陣外空間疊加,在某個(gè)特定方向上造成盲點(diǎn)。在工程上,消除盲點(diǎn)的主要措施是合理選擇陣格尺寸和輻射單元的口徑尺寸。單元口徑尺寸越大,盲點(diǎn)越靠近陣列的法線方向,因此應(yīng)盡量減小口徑尺寸,使盲點(diǎn)靠近柵瓣方向,再選用較小尺寸的陣格,使柵瓣遠(yuǎn)離掃描空間,這樣既可以再掃描空間不出現(xiàn)柵瓣又抑制了盲點(diǎn)。2.3.3天線的副瓣性能???在相控陣天線的系統(tǒng)性能中,天線的副瓣特性是很重要的,相控陣天線的副瓣特性在很大程度上決定了雷達(dá)抗干擾、抗反輻射導(dǎo)彈及雜波抑制等戰(zhàn)術(shù)性能,是雷達(dá)系統(tǒng)的一個(gè)重要指標(biāo)。為降低相控陣天線的副瓣電平,通常對(duì)陣面天線單元的電流分布采用各種形式的加權(quán),但加權(quán)之后,天線波束的主瓣展寬,將降低天線增益和雷達(dá)角分辨率,不利于抗從主瓣進(jìn)入的干擾。低副瓣與超低副瓣天線通常是指副瓣電平必主瓣電平低30dB與40dB的以上的天線。為實(shí)現(xiàn)這樣的天線,對(duì)面天線而言,主要是應(yīng)按要求的副瓣電平來設(shè)計(jì)天線口徑照射函數(shù),實(shí)現(xiàn)所需的加權(quán)。具體實(shí)現(xiàn)辦法是:可在饋線網(wǎng)絡(luò)中采用不等功率分配器或衰減器加等功率分配器,也可將衰減器與不等功率分配器混用。此外天線反射面的加工必須嚴(yán)格保證公差要求,使天線口徑面上的實(shí)際電流分布與理論上所要求的分布在幅度和相位上的誤差低于所容許的范圍。對(duì)于陣列天線,為獲得低副瓣性能,除幅度加權(quán)外,還可采用密度加權(quán)、相位加權(quán)等方法來實(shí)現(xiàn)等效的幅度加權(quán)口徑照射函數(shù)。陣列中各天線單元激勵(lì)電流的幅度和相位誤差以及各天線單元的安裝公差,應(yīng)嚴(yán)格低于額定副瓣電平所容許的范圍。此外,設(shè)計(jì)中還應(yīng)考慮各天線單元之間的互耦效應(yīng)。同時(shí),因?yàn)樘炀€波束可以在一個(gè)較大的空間范圍內(nèi)進(jìn)行掃描,隨著掃描角的變化,天線單元之間的互耦也會(huì)發(fā)生變化,各天線單元激勵(lì)電流的幅度和相位也會(huì)發(fā)生變化,所以為了實(shí)現(xiàn)低副瓣與超低副瓣電平,還必須考慮天線波束掃描產(chǎn)生的影響。除了精心設(shè)計(jì)天線單元,采用單元之間的去耦措施外,解決此問題的一種思路是統(tǒng)一設(shè)計(jì)天線單元和饋電網(wǎng)絡(luò)。饋電網(wǎng)絡(luò)的設(shè)計(jì),要考慮天線單元之間互耦隨波束掃描而變化的因素。在一定條件下,饋電網(wǎng)絡(luò)的設(shè)計(jì)應(yīng)具有隨波束掃描變化而進(jìn)行自適應(yīng)調(diào)整的能力。密度加權(quán)天線陣是一種不等間距加權(quán)天線陣。不等間距天線陣中各有源天線單元的間距是不等的,靠近陣列中心的單元其間距小些,偏離陣列中心越遠(yuǎn)的單元,其間距越大,但各天線單元激勵(lì)電流的幅度都相同。密度加權(quán)天線陣是以抬高遠(yuǎn)區(qū)副瓣電平為代價(jià)(會(huì)因此降低天線增益)來降低主瓣附近的副瓣電平。對(duì)采用數(shù)字式移相器的天線陣列,如果在波束控制信號(hào)之外還將相位加權(quán)控制信號(hào)加到陣列中某些單元的移相器上,改變陣列各天線單元激勵(lì)電流的相位,那么也可以得到類似于加權(quán)的效果,降低天線波瓣主瓣附近副瓣電平。2.3.4陣列單元隨機(jī)幅度與相位誤差的影響??相控陣天線中各單元的激勵(lì)電流在幅度和相位上存在著隨機(jī)幅度與相位誤差(不可能完全相同),引起幅相誤差的原因很多,如天線單元方向圖的不一致,天線單元的安裝誤差、天線單元的損壞、天線單元之間互耦引起的天線單元的阻抗變化和駐波變化、饋線各單元通道之間的幅相誤差(如移相器的誤差,阻抗不匹配引起反射所產(chǎn)生的幅相誤差、溫度變化影響等)。這類誤差具有隨機(jī)性,對(duì)天線波瓣的副瓣電平、天線增益以及波束指向等均有重要影響。但總的來說,各天線單元的隨機(jī)幅相誤差對(duì)天線增益的影響較大,對(duì)天線副瓣和陣列波束的指向精度的影響較小。采用集中式發(fā)射機(jī)或子陣式發(fā)射機(jī)的相控陣?yán)走_(dá),一部發(fā)射機(jī)要負(fù)責(zé)給整個(gè)發(fā)射相控陣天線或發(fā)射天線子陣饋電。從發(fā)射機(jī)輸出端到每一個(gè)天線單元,必須有一個(gè)發(fā)射饋線系統(tǒng),將發(fā)射機(jī)輸出信號(hào)功率分配到各個(gè)天線單元。對(duì)于接收相控陣天線,各個(gè)天線單元接收到的信號(hào),必須經(jīng)過一個(gè)接收饋線系統(tǒng)逐級(jí)相加,然后送至接收機(jī)輸入端。發(fā)射或接收饋線系統(tǒng)都由許多不同的饋線元件如功率分配器、移相器、傳輸線段、調(diào)諧元件、定向耦合器等組成,各個(gè)饋線元件的連接不可能做到完全匹配,這些連接點(diǎn)處,存在電磁波反射。當(dāng)各個(gè)節(jié)點(diǎn)處的多次發(fā)射波重新到達(dá)天線單元(對(duì)發(fā)射陣)或接收機(jī)輸入端(對(duì)接收機(jī))時(shí),這些反射波與主入射波疊加,對(duì)發(fā)射陣來說,使各天線單元輻射出去的信號(hào)的相位和幅度發(fā)生變化,對(duì)接收陣而言,則使各天線單元接收到的信號(hào)在到達(dá)接收機(jī)輸入端時(shí)產(chǎn)生幅度和相位起伏。2.4?互耦效應(yīng)對(duì)陣性能的影響微帶陣列天線中,各微帶元之間存在互耦效應(yīng),將導(dǎo)致:1)單元在陣中的方向圖與孤立元的方向圖不同;2)陣中單元的輸入阻抗與孤立元的輸入阻抗不同;3)對(duì)于相控陣,陣中單元的輸入阻抗將隨掃描角的改變而改變,這會(huì)引起陣的失配和單元效率(或增益)的降低;4)天線的極化特性要變壞2.4.1互耦對(duì)陣元方向圖的影響???設(shè)M×N個(gè)微帶天線元組成的陣列,陣中只有第j個(gè)單元接上電源,而其余單元都端接匹配負(fù)載。從物理意義上,可以看出此時(shí)單元在陣中的方向圖將不同于孤立元的方向圖(存在互耦的影響)。互耦的存在將使第j個(gè)元上的輻射的能量有一部分耦合到其它陣元,耦合能量的一部分被其端接負(fù)載所消耗,另一部分將再輻射,因此,陣中單元方向圖將不同于孤立元的方向圖。而且,對(duì)于有限數(shù)目陣元組成的陣列,由于各陣元再陣中所處的位置不同,它所受到的互耦影響也不同,故再陣中單元方向圖也不相同。只有在無限陣列中,各元在陣中單元方向圖才相同。嚴(yán)格的講,由于互耦的影響,將使微帶天線貼片上電流分布規(guī)律也有變化。特別是對(duì)相控陣天線,隨著掃描角的變化,電流分布也要改變。對(duì)于一個(gè)大陣,由于陣的總方向圖的主瓣很窄,而一般陣元的方向圖主瓣很寬。即陣元方向圖對(duì)陣的總方向圖中主瓣和前面幾個(gè)旁瓣的影響不太大。在這種情況下,計(jì)算總方向圖時(shí),可以忽略互耦影響,這就是一般陣天線中常用的分析方法,這是一種近似方法。而對(duì)于掃描波束的相控陣天線,就不能忽略這種互耦影響。2.4.2互耦對(duì)陣元輸入阻抗和匹配的影響???兩種分析方法:互阻抗法和散射矩陣法(兩種方法得到的結(jié)果相同)???有源陣列的輸入阻抗將隨波束掃描方向的變化而變化,這是由于互耦影響形成的。對(duì)于一個(gè)有限尺寸的陣列,由于各陣元在陣中的位置不同,其互阻抗也不同,所以一般來說,各陣元的有源輸入阻抗也不完全相同。嚴(yán)格的說,只有無限大尺寸的陣列,各陣元在陣中所處的環(huán)境完全相同,那么各陣元的有源輸入阻抗才會(huì)相同。對(duì)于有限尺寸的大陣,除位于陣邊緣的少數(shù)陣元外,其它多數(shù)陣元的輸入阻抗可以近似認(rèn)為是相同的。如果連接電源和陣元之間的傳輸線已與電源內(nèi)阻抗相匹配,則在第mn個(gè)元輸入端處的反射系數(shù)為:
可見,反射系數(shù)也將隨波束掃描方向的改變而改變,所以在相控陣天線中不僅需要考慮到陣元在一定的頻帶范圍內(nèi)的阻抗匹配(即寬帶匹配),而且還要考慮到在一定的掃描范圍內(nèi)的阻抗匹配(即寬角匹配)。這是相控陣天線與非電控掃描天線以及一般天線的不同之處。后兩者只需要考慮寬帶阻抗匹配。
利用互耦系數(shù)構(gòu)成的散射矩陣來計(jì)算反射系數(shù)隨掃描方向的變化是較為直接而又簡(jiǎn)便的方法。這是因?yàn)樯⑸渚仃囍苯优c入射電壓波和反射電壓波相聯(lián)系,而且在微波網(wǎng)絡(luò)中能直接測(cè)量的是耦合系數(shù)(或稱為散射系數(shù))。
2.4.3互耦對(duì)相控陣天線增益的影響
2.4.4確定微帶天線元之間互耦的方法??兩種方法:一是通過實(shí)驗(yàn)測(cè)量,二是利用分析和計(jì)算方法得出a).實(shí)驗(yàn)測(cè)定法確定各元之間互耦的一種最符合實(shí)際的的方法是直接在陣中進(jìn)行測(cè)量,實(shí)際上,利用散射系數(shù)的互易性,以及陣結(jié)構(gòu)的對(duì)稱性可以使測(cè)量次數(shù)大大減小。同時(shí),對(duì)于大陣,在陣中除靠邊緣的陣元外,對(duì)位于陣中間的單元可近似認(rèn)為它們所處的陣環(huán)境相同。因此,可以認(rèn)為它們的反射系數(shù)相同,這樣只要選擇在陣中不同位置的幾個(gè)典型單元,確定它們的反射系數(shù)就可以反映整個(gè)陣的反射特性。通常在設(shè)計(jì)陣時(shí),往往只用兩個(gè)陣元,只需要實(shí)測(cè)這兩個(gè)陣元之間的耦合系數(shù),而忽略其它陣元對(duì)它們的影響。因此,只要測(cè)出這兩個(gè)元在不同取向和位置時(shí)的耦合系數(shù),據(jù)此計(jì)算陣的反射系數(shù),并設(shè)計(jì)匹配措施。但要注意一點(diǎn),對(duì)于波導(dǎo)型、縫隙或振子陣元,這樣的測(cè)量只要在一塊較大的金屬板(作為接地平面)上放置陣元即可。對(duì)微帶特性元除了接地平面外,還必須考慮它們之間有介質(zhì)基片,這是不能忽略的。元間距在幾個(gè)波長(zhǎng)范圍內(nèi)的耦合系數(shù)變化的一般規(guī)律:1)隨著元間距的加大,耦合系數(shù)減小,在E面耦合系數(shù)近似按1/d減??;在H面耦合系數(shù)減小更快,近似按1/d2減小。而耦合系數(shù)的相位滯后基本上按kd成直線變化。這意味著在微帶基片較薄和間距不太大時(shí),耦合主要取決于空間輻射波,表面波耦合不占主要部分。2)E面和H面耦合曲線是不同的,因此微帶元的相對(duì)取向位置不同,它們之間的耦合也不相同。3)考慮其它陣元存在對(duì)互耦的影響時(shí),法線它對(duì)E面耦合影響稍大,使耦合系數(shù)比只有兩元時(shí)要大一些,而相位滯后要變小一些。其它陣元存在對(duì)H面耦合的影響較小。因此作為一種近似計(jì)算,利用兩元間的互耦系數(shù)來計(jì)算陣中的反射系數(shù)和輸入阻抗還是可行的,特別對(duì)較小的陣。b).用反應(yīng)原理計(jì)算互耦
c).無限周期陣列概念與波導(dǎo)模擬器???上面討論的是先用實(shí)驗(yàn)或計(jì)算機(jī)來確定各元間的互導(dǎo)納或散射系數(shù),然后再將所有元的互耦影響一一疊加起來,從而得到陣中單元的輸入阻抗或反射系數(shù)的方法稱為逐元法,該法的優(yōu)點(diǎn)是直觀,可以預(yù)測(cè)出再陣中不同位置的陣元性能,方法不僅適用平面陣也適用共形陣。所以,逐元法再中小尺寸的平面陣和共形陣中應(yīng)用最廣泛。但對(duì)于大陣,由于陣元數(shù)目多,使計(jì)算或?qū)嶒?yàn)工作量大大增加,這時(shí),常采用無限周期陣列的概念,因?yàn)榇箨囍虚g部分的單元再陣中所處的環(huán)境基本相同,所以再陣中間不同位置的單元的性能基本一致,因此,預(yù)測(cè)大陣性能可用無限陣列來近似,在無限陣中每個(gè)陣元所處的環(huán)境完全相同,陣中各元的性能也完全相同。分析無限陣列,不是先求各元間的互耦而是直接建立求陣中單元輸入阻抗或反射系數(shù)的方程。由于無限陣是一個(gè)周期結(jié)構(gòu),因而可利用弗洛蓋特(Floquet)定理來建立陣的場(chǎng)方程。常用的解法有場(chǎng)匹配法、復(fù)功率法、積分方程法(用矩量法求解)、變分法和留數(shù)法等。利用無限周期陣列模型與逐元法相比有很多優(yōu)點(diǎn)。首先它已將所有陣元存在的互耦影響全部自動(dòng)考慮在內(nèi),所以方法比較嚴(yán)格。其次,它也考慮了陣元上的場(chǎng)分布受互耦的影響,特別是場(chǎng)分布隨掃描方向而變化的影響。因此,用無限陣列模型可以預(yù)測(cè)出陣在掃描時(shí)是否會(huì)出現(xiàn)“盲點(diǎn)”,所以這種方法已在分析波導(dǎo)型、縫隙型和振子型陣天線中廣泛應(yīng)用。對(duì)于微帶天線元組成的大陣,原則上也可以利用這種方法。
基于無限陣列概念還發(fā)展了一種實(shí)驗(yàn)?zāi)M技術(shù)用來預(yù)測(cè)相控陣天線的反射特性。這種技術(shù)是利用波導(dǎo)模擬器來完成的。
2.5?輻射單元、排列柵格和陣形2.5.1微帶天線陣元的類型
可根據(jù)陣的帶寬、極化、方向圖特性(或掃描范圍)、增益和效率等要求以及陣在結(jié)構(gòu)上的要求來選擇最合適的微帶天線元。微帶天線元大致可分為三類:貼片式、縫隙式和不均運(yùn)行微帶線等。
1.貼片式微帶天線
按工作原理可分為諧振式和行波式。諧振式貼片微帶天線作為陣元具有以下一些主要特點(diǎn)。單元本身具有一定的方向性系數(shù),典型數(shù)據(jù)可達(dá)6dB左右。其效率較高,一般在90%以上。其半功率波束寬度大致在80o~100o之間。對(duì)于相控陣而言比較適合于最大掃描角在±50o以內(nèi)。該形式的天線可工作在線極化、圓極化或變極化。對(duì)方形和圓形貼片,利用相互正交的雙端饋電,在利用功率分配器和移相器以改變兩端激勵(lì)的相對(duì)振幅和相位,就可以構(gòu)成圓極化或變極化。對(duì)接近方形的貼片和橢圓形貼片,利用單端饋電也可以做成圓極化陣元,但不能作成變極化陣元。諧振式貼片具有以下一些缺點(diǎn)。阻抗匹配帶寬較窄,通常在輸入端駐波系數(shù)小于2的帶寬只有百分之幾。當(dāng)掃描范圍大于±60o時(shí),單元方向圖的波束顯得窄了一些,同時(shí),當(dāng)要求較大掃描范圍時(shí),為了避免在掃描范圍內(nèi)出現(xiàn)柵瓣,要求單元間距要較小,這樣貼片尺寸也稍嫌大。這對(duì)將陣元和饋電網(wǎng)絡(luò)都集成在同一介質(zhì)基片上的單面陣就顯得空間擁擠。因此,為了展寬波束或縮小天線尺寸,也常采用λ/4短路矩形貼片作為陣元,它相當(dāng)于矩形貼片的一個(gè)輻射邊短路,而尺寸縮小了1/2。此外,規(guī)則形狀的諧振式貼片單元可以一哦能夠較為準(zhǔn)確的方法分析,已經(jīng)導(dǎo)出各種較為準(zhǔn)確的設(shè)計(jì)公式,所以設(shè)計(jì)較為簡(jiǎn)便,且減少調(diào)試工作量。
行波式貼片微帶天線一端激勵(lì),另一端接匹配負(fù)載以保證貼片上電流或其內(nèi)空間場(chǎng)按行波分布。這種天線的特點(diǎn)是阻抗匹配帶寬較寬,但波束最大值指向隨頻率變化。這種天線最大值輻射方向可以設(shè)計(jì)成接近邊射到端射的任一方向。它既可以輻射線極化波,也可以輻射圓極化波,但由于其一部分功率消耗在終端負(fù)載上所以效率較低。
2.縫隙式微帶天線
縫隙天線利用微帶傳輸線激勵(lì),是在微帶傳輸線接地面上開縫,故其輻射是向兩邊的,如果需要單方向輻射,可在離縫高度為λ/4處加金屬反射板。
這種天線的特點(diǎn)是它的阻抗匹配帶寬比諧振式貼片天線要寬,特別是寬矩形縫。這種縫隙天線一般輻射線極化波,對(duì)制造公差要求比貼片式要小,用于陣元時(shí)量輻射元之間的隔離比貼片式要好,但當(dāng)要求單方向輻射時(shí),這種天線的厚度比貼片式天線要大。同時(shí)分析和設(shè)計(jì)這種天線要比貼片式困難一些,其廣泛應(yīng)用于衛(wèi)星廣播接收陣的陣元。
3.不均勻性微帶線
微帶線不均勻性是另一大類廣泛應(yīng)用的天線陣元。它通常是利用在微帶傳輸線上進(jìn)行切割、突變或彎曲等方式形成輻射。
這類天線用作陣元的特點(diǎn)是阻抗匹配頻帶較寬,快點(diǎn)電路結(jié)構(gòu)簡(jiǎn)單而緊湊。構(gòu)成陣的波束指向一般可設(shè)計(jì)在任何方向上。其缺點(diǎn)就是波束指向隨頻率變化較靈敏。由于是行波饋電,陣的效率不高。
2.5.2排列柵格和陣形
柵格一般有兩種排列方式:一是矩形柵格排列;二是三角形柵格排列。在矩形柵格的單元位置中,只有當(dāng)(m+n)為偶數(shù)的位置中放置輻射單元,才組成三角形柵格。
對(duì)于同樣的柵格抑制,矩形柵格排列比三角形柵格排列單元數(shù)多(比柵格為等邊三角形時(shí)多16%)。輻射單元少,意味著成本降低。另外柵格間距的增加,有利于輻射單元的安裝。因此,三角形排列采用的較多。
外觀形狀為矩形或正方形的陣列最常見,計(jì)算比較簡(jiǎn)單,其尺寸大小由主瓣寬度決定。均勻幅度的矩形陣,第一旁瓣電平可高達(dá)-13.2dB,抗干擾性能不好,這是最大的缺點(diǎn)。
把矩形陣改為圓形陣,在均勻幅度時(shí),第一旁瓣電平可降至-17.6dB,圓形陣多采用正方形柵格。
用三角形柵格可排列成正六角形陣,這樣的排列可有效的減少相控陣天線單元數(shù)目,降低雷達(dá)的造價(jià)。
當(dāng)掃描角θ≥60o時(shí),平面陣會(huì)受到柵瓣的影響而難以實(shí)現(xiàn),利用球面的自然對(duì)稱性,能在較寬的角度范圍內(nèi)保持天線方向圖和增益的均勻性,同時(shí)可克服寬角度下阻抗失配的影響。因此,將陣列單元排列在一個(gè)球面上構(gòu)成球形陣,可改善角掃描性能。
對(duì)于機(jī)載雷達(dá),為了便于安裝,減小阻力和覆蓋盡可能寬的立體角,要求陣面的形狀與機(jī)體表面形狀一致,這就是所謂的共形陣。
圖2.5?三角形柵格
2.6?電磁波的極化
電場(chǎng)強(qiáng)度E的方向隨時(shí)間變化的方式稱為電磁波的極化。根據(jù)E矢量的端點(diǎn)軌跡形狀,電磁波的極化可分為三種:線極化、圓極化和橢圓極化。
兩個(gè)相位相差π/2,振幅相等的空間上正交的線極化波,可合成一個(gè)圓極化波;反之也成立。兩個(gè)旋向相反,振幅相等的圓極化波可以合成一個(gè)線極化波,反之亦然。
橢圓長(zhǎng)軸對(duì)x軸的夾角τ稱為極化橢圓的傾角,長(zhǎng)軸與短軸的比值稱為軸比,極化橢圓的軸比、傾角以及旋向是描述極化特性的三個(gè)特征量。線極化(軸比→∞)和圓極化(軸比等于1)都是橢圓極化的特例,旋向以傳播方向z為參考,它直接由相位差φ決定,若φ在第一二象限,則為左旋波,若φ在三四象限,則為右旋波。
兩個(gè)空間上正交的線極化波可以合成為一個(gè)橢圓極化波,反之亦然。兩個(gè)旋向相反的圓極化波可以合成一個(gè)橢圓極化波,反之亦然。
圓極化波具有兩個(gè)與應(yīng)用相關(guān)的重要特性:
1)當(dāng)圓極化波入射到對(duì)稱目標(biāo)(如平面、球面等)上時(shí),反射波變?yōu)榉葱虻牟ǎ醋笮冇倚?,右旋變左旋?)天線若輻射左旋圓極化波,則只接收左旋圓極化波而不接收右旋圓極化波,反之,若天線輻射右旋圓極化波,則只接收右旋圓極化波,這稱為圓極化天線的旋轉(zhuǎn)正交性。根據(jù)這些特性,在雨霧天氣里,雷達(dá)采用圓極化波工作將具有抑制雨霧干擾的能力。因?yàn)樗c(diǎn)近似球形,對(duì)圓極化波的反射是反旋的,不會(huì)被雷達(dá)天線所接收。而雷達(dá)目標(biāo)(如飛機(jī)、船艦、坦克等)一般是非簡(jiǎn)單對(duì)稱體,其反射波是橢圓極化波,必有同旋向的圓極化成分,因而能被收到。由于一個(gè)線極化波可分解為兩個(gè)旋向相反的圓極化波,這樣,不同取向的線極化波都可由圓極化天線收到,因此,現(xiàn)代戰(zhàn)爭(zhēng)中都采用圓極化天線進(jìn)行電子偵察和實(shí)施電子干擾,同樣,圓極化天線也有很多民用方面的應(yīng)用。第三章?微帶天線的饋電方法天線是一種能量變換器,發(fā)射天線把發(fā)射機(jī)輸出回路的高頻交流電能變?yōu)檩椛潆姶拍?,即變?yōu)榭臻g電磁波。相反,接收天線把到達(dá)的空間電磁波變?yōu)楦哳l交流電能,傳送到接收機(jī)的輸入回路。從發(fā)射機(jī)到天線以及從天線到接收機(jī)之間的連接是依靠饋線來實(shí)現(xiàn)的。傳輸線(或饋電線)系指將高頻交流電能從電路的某一段傳送到另一段的設(shè)備。一般說來,對(duì)傳輸線有以下要求:1)傳輸線應(yīng)具有最小的能量損耗。這些損耗包括導(dǎo)線中電阻產(chǎn)生的能量輻射、導(dǎo)線間介質(zhì)中所產(chǎn)生的介質(zhì)損耗,以及發(fā)射到外部空間的輻射損耗。2)沿線路允許傳輸?shù)膸拑?nèi)高頻振蕩功率應(yīng)盡可能大3)傳輸線不應(yīng)改變天線的方向圖特性。因此必須消除傳輸線上的能量輻射。要消除這種“天線效應(yīng)”,必須在所給的工作波長(zhǎng)下選擇適當(dāng)?shù)膫鬏斁€形式和幾何結(jié)構(gòu)。4)傳輸線的電參量應(yīng)穩(wěn)定到這樣的程度,以至于外部媒質(zhì)的溫度、濕度和壓力的改變,以及機(jī)械振動(dòng)和其它不穩(wěn)定因素均不影響到天線設(shè)備的工作穩(wěn)定性。5)傳輸線應(yīng)有適當(dāng)?shù)某叽绾椭亓?)傳輸線應(yīng)有一定的機(jī)械強(qiáng)度,便于裝配。在制造上也要盡可能的簡(jiǎn)單,使用中要考慮到傳輸線的經(jīng)濟(jì)性。當(dāng)負(fù)載阻抗等于傳輸線的特性阻抗時(shí),其工作在行波狀態(tài),傳輸效率最高,功率容量也最大;且傳輸線的輸入阻抗呈電阻性,它的大小不會(huì)隨頻率而變化,這樣便于與發(fā)射機(jī)調(diào)諧匹配。因此,希望傳輸線工作在行波狀態(tài)。但是,在無線電收發(fā)設(shè)備中,傳輸線的終端負(fù)載是天線,而天線的輸入阻抗是隨頻率而變化的,在工作波段內(nèi)呈現(xiàn)為復(fù)阻抗性質(zhì)。因此就要在傳輸線末端與天線之間加上一個(gè)“匹配裝置”,使得天線阻抗經(jīng)過匹配裝置的變換作用后,與傳輸線的特性阻抗相等,從而使傳輸線工作在行波狀態(tài)或稱為匹配。3.1?微帶單元天線饋電兩種基本方式:一是用微帶線饋電;二是用同軸線饋電3.1.1微帶線饋電???用微帶線饋電時(shí),饋線與微帶貼片是共面的,因而可方便光刻,制作簡(jiǎn)便。但是饋線本身也要引起輻射,從而干擾天線方向圖,降低增益。為此一般要求微帶線寬度w不能寬,希望w <λ。還要求微帶天線特性阻抗Ze要高些或基片厚度h要小,介電常數(shù)εr要大。天線輸入阻抗與饋線特性阻抗的匹配可由適當(dāng)選擇饋電點(diǎn)位置來實(shí)現(xiàn)。當(dāng)饋電點(diǎn)沿矩形貼片的兩邊移動(dòng)時(shí),天線諧振電阻變換。對(duì)于TM10模,饋電點(diǎn)沿饋電邊(x軸)移動(dòng)時(shí)阻抗調(diào)節(jié)范圍很大。微帶線也可通過間隔伸入貼片內(nèi)部,以獲得所需阻抗。
饋電點(diǎn)位置的改變將使饋線與天線間的耦合改變,因而使諧振頻率有一個(gè)小的漂移,但是方向圖一般不會(huì)受影響(只要仍保證主模工作)。頻率的小漂移可通過稍稍修改貼片尺寸來補(bǔ)償。
在理論計(jì)算中,微帶饋源的模型可等效威嚴(yán)z軸方向的一個(gè)薄電流片,其背后為空腔磁臂,為計(jì)入邊緣效應(yīng),此電流片的寬度d0比微帶寬度w寬(取有效寬度)。
微帶饋線本身的激勵(lì)往往利用同軸-微帶過渡。有兩種形式:垂直過渡(底饋)和平行過渡(邊饋)。
3.1.2同軸線饋電
用同軸線饋電的優(yōu)點(diǎn)有:1)饋電點(diǎn)可以選在貼片內(nèi)任意所需位置,便于匹配。2)同軸電纜置于接地板上方,避免了對(duì)天線輻射的影響。缺點(diǎn)是結(jié)構(gòu)不便于集成,制作麻煩。
這種饋源的理論模型,可表示為z向電流圓柱和接地板上同軸開口處的小磁流環(huán)。其簡(jiǎn)化處理是略去磁流的作用,并用中心位于圓柱中心的電流片來等效電流柱。一種更嚴(yán)格的處理是把接地板上的同軸開口作為傳TEM波的激勵(lì)源,而把圓柱探針的效應(yīng)按邊界條件來處理。
天線設(shè)備作為一個(gè)單口元件,在輸入端面上常體現(xiàn)為一個(gè)阻抗元件或等效阻抗元件,與相連接的饋線或電路有阻抗匹配的問題。
微帶輻射器的輸入阻抗或輸入導(dǎo)納是一個(gè)基本參數(shù),因此應(yīng)精確的知道輸入導(dǎo)納,以便在單元和饋線之間做到良好的匹配。
由于對(duì)大多數(shù)工程應(yīng)用來說,簡(jiǎn)單的傳輸線模型給出的結(jié)果已經(jīng)足夠滿意,很多文獻(xiàn)都給出了用傳輸線模型計(jì)算微帶天線輸入阻抗的方法,但由不同文獻(xiàn)給出的方法計(jì)算出的值相差較大。
3.1.3電磁耦合型饋電
結(jié)構(gòu)上的特點(diǎn)是貼片(無接觸)饋電,可利用饋線本身,也可通過一個(gè)口徑(縫隙)來形成饋線與天線間的電磁耦合。因此可統(tǒng)稱為貼片式饋電。這對(duì)多層陣中的層間連接問題,是一種有效的解決方法,并且大多數(shù)能獲得寬頻帶的駐波特性。
利用口徑耦合的電磁耦合型饋電結(jié)構(gòu)是把貼片印制在天線基片上,然后置放在刻蝕有微帶饋線的饋源基片上,二者之間有一帶有矩形縫隙的金屬底板。微帶線通過此口徑來對(duì)貼片饋電??趶匠叽鐚⒖刂朴绅伨€至貼片的耦合,采用長(zhǎng)度上比貼片稍小的口徑一般可獲得滿意的匹配。
3.2 陣的饋電形式與設(shè)計(jì)
陣的饋電網(wǎng)絡(luò)的主要任務(wù)是保證各陣元所要求的激勵(lì)振幅和相位,以便形成所要求的方向圖,或者使天線性能各項(xiàng)指標(biāo)最佳。對(duì)饋電網(wǎng)絡(luò)的主要要求是阻抗匹配、損耗小、頻帶寬和結(jié)構(gòu)簡(jiǎn)單等。陣的饋電形式主要有并饋和串饋兩種形式,也有這兩種形式的組合。
3.2.1并聯(lián)饋電
并聯(lián)饋電是利用若干個(gè)功率分配器,將輸入功率分配到各個(gè)陣元。功率分配器可以分成兩路、三路或多路。但為了使饋電結(jié)構(gòu)中最大和最小阻抗之比最小,通常采用兩路功率分配器。
對(duì)于并聯(lián)饋電陣,當(dāng)所有陣元相同時(shí),各元所要求的振幅分布可以利用改變功率分配器的各路功率分配比來實(shí)現(xiàn),而各陣元所要求的相位分布,可采用控制各路饋電線長(zhǎng)度或附加移相器來實(shí)現(xiàn)。例如對(duì)于同相陣,則可以利用各路饋線等長(zhǎng)或相差饋線波長(zhǎng)的整數(shù)倍來保證各元同相激勵(lì)。對(duì)于相控陣同相則要求采用電控移相器來實(shí)現(xiàn)波束掃描所要求的相位分布。對(duì)功率分配器除要保證功率分配比外,還要求各路輸出端之間有較好的隔離。
并聯(lián)饋電網(wǎng)絡(luò)的設(shè)計(jì)是比較簡(jiǎn)單和直接的。當(dāng)選定陣元的形式和尺寸后,根據(jù)各元所要求的激勵(lì)振幅和相位,考慮到互耦的影響,可計(jì)算出各元的輸入阻抗。已知陣元的輸入阻抗,所要求的激勵(lì)振幅和相位后,就可以設(shè)計(jì)功率分配器和饋線的布局(要考慮長(zhǎng)度以保證相位)。
并聯(lián)饋電微帶天線陣的陣元較少時(shí),通??蓪⑽Чβ史峙淦骱宛伨€與陣元都集成在同一塊介質(zhì)基片上,稱為單面陣。當(dāng)陣元數(shù)目較多或陣面空間較擁擠時(shí),也可以將微帶功率分配器的一部分或全部放在陣面后面,組成多層陣。此時(shí)各元用同軸探針激勵(lì),或者上下層功率分配器之間用同軸探針相連,為此必須要求各層具有金屬化孔,并要求各層之間嚴(yán)格對(duì)準(zhǔn)。陣元數(shù)多時(shí),需要采用多級(jí)功率分配器,為了減少損耗和提高功率容量,對(duì)靠近輸入端的前面幾級(jí)功率分配器也可采用波導(dǎo)、同軸線或板線式功率分配器和饋線。
并聯(lián)饋電具有以下幾個(gè)特點(diǎn):設(shè)計(jì)比較簡(jiǎn)單,各元所要求的激勵(lì)振幅和相位可以通過設(shè)計(jì)饋電網(wǎng)絡(luò)來實(shí)現(xiàn)。當(dāng)饋線等長(zhǎng)時(shí),波束指向與頻率無關(guān),所以頻帶寬度主要取決于阻抗匹配的頻帶,比較容易實(shí)現(xiàn)寬頻帶。這種饋電形式既適用于固定波束陣,又適用于利用電控移相器進(jìn)行波束掃描的相控陣。它的缺點(diǎn)是需要許多功率分配器,饋線總長(zhǎng)度較長(zhǎng),這不僅占據(jù)了空間,也大大增加了傳輸損耗。同時(shí),使整個(gè)饋電網(wǎng)絡(luò)比較復(fù)雜。
3.2.2串聯(lián)饋電
串聯(lián)饋電是將天線陣元用微帶傳輸線串聯(lián)連接起來,此時(shí),對(duì)饋電的主傳輸線來說,每一天線陣元都等效為一個(gè)四端網(wǎng)絡(luò)。所以,從等效網(wǎng)絡(luò)觀點(diǎn)來看,這種饋電形式確切的說是一種級(jí)聯(lián)形式的饋電。每一陣元的等效四端網(wǎng)絡(luò)可以有各種形式,它既可以是一個(gè)并聯(lián)導(dǎo)納,也可以是一串聯(lián)阻抗或更一般形式的T形、∏型或變壓器形式的等效網(wǎng)絡(luò)。對(duì)于矩形貼片微帶天線元,就可等效為一并聯(lián)導(dǎo)納的四端網(wǎng)絡(luò)。當(dāng)考慮了互耦影響時(shí),此并聯(lián)導(dǎo)納又矩形貼片元的自導(dǎo)納加上其它各元的互導(dǎo)納。
串聯(lián)饋電形式,根據(jù)傳輸線終端所接負(fù)載不同,可分為行波串聯(lián)饋電和諧振串聯(lián)饋電。串聯(lián)饋電陣設(shè)計(jì)比并聯(lián)饋電陣設(shè)計(jì)要復(fù)雜一些,特別在考慮各元間的互耦影響時(shí),需要用迭代法來設(shè)計(jì),以保證各元所要求的激勵(lì)振幅和相位。
串聯(lián)饋電陣各元所要求的激勵(lì)振幅和相位是通過改變各天線元尺寸來達(dá)到的,所以,一個(gè)具有幅度或相位加權(quán)的串聯(lián)陣,各天線元的尺寸一般是不相同的。諧振串聯(lián)饋電無論從阻抗匹配和方向圖特性來講,一般都是窄頻帶的。當(dāng)頻率變換時(shí),由于相位的變化,使波束指向改變。但這種饋電形式效率較高,傳輸損耗也較小,饋電無論結(jié)構(gòu)簡(jiǎn)單又緊湊。行波饋電的阻抗匹配頻帶較寬,但波束指向隨頻率改變,另一缺點(diǎn)是饋電效率較低,因?yàn)樵诮K端負(fù)載上要消耗一部分功率。
串聯(lián)饋電陣與并聯(lián)饋電陣相比,前者饋電電路簡(jiǎn)單,饋線總長(zhǎng)度較短,所以饋線損耗較小。因?yàn)椴恍枰β史峙淦?,所以空間利用也必并聯(lián)饋電要好。行波串聯(lián)饋電陣阻抗匹配頻帶寬。但串聯(lián)饋電陣設(shè)計(jì)要復(fù)雜一些。其波束指向隨頻率變化。如果采用中心串聯(lián)饋電,其波束指向?qū)⒉浑S頻率變化。
以上討論的主要是線陣的饋電形式,但也可以推廣應(yīng)用于二維平面陣。對(duì)于二維平面陣的饋電,可以全部采用并饋或串饋,也可以采用一維為并饋,另一維為串饋的組合形式,平面陣除上述饋電形式外,對(duì)于微帶天線元組成的平面陣,還有一種交叉饋電形式,這種饋電形式,還可以通過改變輻射元線寬度或饋線與輻射元的角度來達(dá)到幅度加權(quán)的目的。
3.3 相控陣天線的饋電方式
發(fā)射機(jī)輸出的信號(hào),按一定的幅度分布和相位梯度饋送給陣面上的每一個(gè)天線單元。接收時(shí),同樣必須將各個(gè)天線單元收到的信號(hào)按一定的幅度和相位要求進(jìn)行加權(quán),然后加起來饋送給接收機(jī)。相控陣天線的饋電網(wǎng)絡(luò),就是使陣面上眾多的天線單元與發(fā)射機(jī)或接收機(jī)相連接的傳輸系統(tǒng)。各個(gè)天線單元所需要的幅度和相位加權(quán)也是在饋線系統(tǒng)中實(shí)現(xiàn)的。
為了獲得低副瓣相控陣天線,饋線系統(tǒng)提供給每個(gè)天線單元的電流信號(hào)的幅度是不相等的,通常情況下,陣列中間天線單元的信號(hào)電流幅值最大,陣列邊緣單元的電流幅值最小,各天線單元的激勵(lì)電流按一定的幅度分布來確定。除了自適應(yīng)陣列天線外,對(duì)一般的相控陣,這一幅度分布是固定的,不應(yīng)隨天線波束掃描方向的變化而變化。信號(hào)沿陣列天線口徑的不等幅分布,通常采用不等功率的功率分配網(wǎng)絡(luò)來實(shí)現(xiàn)。
饋線系統(tǒng)還要保證每個(gè)天線單元激勵(lì)電流的相位符合天線波束掃描指向要求。通常將饋電網(wǎng)絡(luò)向各個(gè)天線單元提供所需的信號(hào)相位稱之為“饋相”,即將對(duì)天線單元信號(hào)進(jìn)行復(fù)加權(quán)中的相位加權(quán)部分稱之為“饋相”,“饋相”的方式與饋電網(wǎng)絡(luò)的組成相關(guān)。
對(duì)相控陣的饋電系統(tǒng)有許多要求,其中之一是通過降低饋線系統(tǒng)的復(fù)雜性來降低成本。為此,減小移相器和每一移相器所需要的開關(guān)組件的數(shù)目、簡(jiǎn)化移相器控制信號(hào)的產(chǎn)生方式以及壓縮移相器控制信號(hào)的數(shù)目等具有重要意義,而這些都是與饋相方式密切相關(guān)的。
由于可將整個(gè)平面陣分成若干個(gè)線陣,每一線陣都被當(dāng)成一個(gè)子天線陣,因此對(duì)平面陣列天線的饋相,可分解成對(duì)若干個(gè)相同子陣和另一子陣的饋相(一個(gè)線陣又可以相應(yīng)地分為若干子陣),這種饋相方式的移相器數(shù)目要增加一個(gè)線陣的單元數(shù)目,但移相器控制信號(hào)容易產(chǎn)生,控制信號(hào)的設(shè)備量也顯著的降低了。
同樣,也可以將“陣內(nèi)相位”矩陣分解為若干個(gè)小的正方形或矩形矩陣,即用若干個(gè)子平面天線陣來構(gòu)成總的平面陣列。
饋線系統(tǒng)在相控陣天線中占有特別重要的位置。低旁瓣天線對(duì)饋線系統(tǒng)幅度和相位精度的要求是很高的,此外,承受高功率的能力、饋線系統(tǒng)的損耗、測(cè)試和調(diào)整的方便性,以及體積、重量等要求,也是選擇饋電方式時(shí)必須考慮的因素。為了降低成本,還要充分考慮生產(chǎn)的一致性、提高成品率和便于加工等要求,至于是否全部功率分配器都要采用隔離式,還是部分采用隔離式、在哪一級(jí)采用隔離式,這可根據(jù)對(duì)系統(tǒng)駐波、功率隔離以及成本要求等進(jìn)行計(jì)算分析后決定,或?qū)@些要求進(jìn)行折衷考慮。皇捷通訊專業(yè)天線研發(fā)生產(chǎn)一體www.laurenrosestyle.com
平面相控陣天線的饋電主要有強(qiáng)制饋電、空間饋電和光學(xué)饋電
3.3.1強(qiáng)制饋電
采用波導(dǎo)、同軸線、板線和微帶線等進(jìn)行功率分配。隨光電子技術(shù)的發(fā)展,也可以采用光纖作為相控陣饋線中的傳輸線,但只能在低功率電平上使用。波導(dǎo)和同軸線用于高功率陣列,低功率部分常用板線、帶線和微帶線。功率分配器有隔離式與非隔離式、等功率分配器與不等功率分配器等多種形式。隔離式功率分配器輸出支臂之間約有20dB隔離度,可以減小由于各傳輸組件之間的反射波引起的干擾,有利于整個(gè)饋線系統(tǒng)獲得低的駐波。當(dāng)隔離式功率分配器的一個(gè)支臂由于開路或短路而出現(xiàn)全反射時(shí),因一半反射功率被隔離臂的吸收負(fù)載所吸收,故有利于保證饋電網(wǎng)絡(luò)的耐功率性能。
3.3.2空間饋電
空間饋電的形式有透鏡式空間饋電和反射式空間饋電等形式。透鏡式空間饋電的天線陣,包括收集陣面和輻射陣面兩部分。收集陣面也稱為內(nèi)天線陣面,它由許多天線單元組成,這些天線單元又稱為收集單元。它們既可排列在一個(gè)平面上,也可排列在一個(gè)曲面上。在天線陣處于發(fā)射狀態(tài)時(shí),發(fā)射機(jī)輸出信號(hào)由照射天線(如波導(dǎo)喇叭天線)照射到內(nèi)天線陣上的收集天線單元,這些收集單元接收照射信號(hào)后,經(jīng)移相器,再傳輸至輻射陣面上的天線單元(也叫輻射單元),然后向空間輻射,對(duì)于有源相控陣天線,經(jīng)過移相器相移后的信號(hào),還要再經(jīng)過功率放大器放大,然后才送給輻射陣面的天線單元。當(dāng)天線陣處于接收狀態(tài)時(shí),輻射陣面接收從空間目標(biāo)反射回來的回波信號(hào),這些信號(hào)送移相器移相后,由收集陣面上的天線單元將其傳輸至陣內(nèi)的接收天線(如由波導(dǎo)喇叭組成的接收天線)。對(duì)于有源相控陣天線,每一輻射單元收到的信號(hào),要先經(jīng)過低噪聲放大后再送給移相器,最后才輸入到收集單元,經(jīng)空間輻射到達(dá)陣內(nèi)接收天線。
這種空間饋電方式,實(shí)質(zhì)上采用空潰的功率分配/相加網(wǎng)絡(luò),省掉了許多加工要求嚴(yán)格的微波高頻器件。這種饋電方式,對(duì)于高頻和雷達(dá)信號(hào)波長(zhǎng)較短的情況(例如S、C、X波段),與強(qiáng)制饋電方式相比,優(yōu)點(diǎn)更為明顯。
反射式空間饋電陣列與透鏡式空間饋電陣列不同,其收集陣面和輻射陣面是同一陣面。這一陣面上各天線單元收到的信號(hào),經(jīng)過移相器移相后,被短路傳輸線或開路傳輸線全反射。對(duì)于這種陣列,作為初級(jí)饋源的照射喇叭天線,在陣列平面的外邊,即采用前饋方式對(duì)天線陣面進(jìn)行空間饋電。由于采用前饋,初級(jí)饋源的天線對(duì)天線陣面有一定的遮擋效應(yīng),對(duì)天線口徑增益和對(duì)天線副瓣電平的性能有不利的影響。這種空潰方式,常見的大多是頻率很高(如X、Ku波段)的相控陣戰(zhàn)術(shù)雷達(dá)。另外,在這種空間饋電陣列中,移相器提供的相移值起了兩次作用,故該值應(yīng)為一半移相器相移值的一半,移相器損耗也增加了一倍。自然,移相器是雙向傳輸型的。
在空間饋電系統(tǒng)中,初級(jí)饋源的照射方向圖為整個(gè)陣面提供了幅度加權(quán)。為了充分利用初級(jí)饋源能量,減小泄漏損失,透鏡內(nèi)天線陣面(收集陣面)的天線單元數(shù)目可適當(dāng)增加,在內(nèi)天線陣面的邊緣部分,可以將幾個(gè)收集單元接收到的信號(hào)相加,在經(jīng)過移相器相移后送至外天線陣面(輻射陣面)的輻射天線單元。
為了降低相控陣天線的副瓣電平,常采用密度加權(quán)方式,這時(shí)陣面上除有源天線單元外,還設(shè)置了相當(dāng)數(shù)量的無源單元,對(duì)于空間饋電的陣列天線,外天線也可以設(shè)計(jì)成密度加權(quán)的相控陣天線。
由于天線物理尺寸的限制,初級(jí)饋源與陣面的距離大體等于天線口徑的尺寸,因此,初級(jí)饋源輻射的電磁波是球面波。由球形波到平面波的準(zhǔn)直修正,由改變移相器上的控制碼來實(shí)現(xiàn),即用改變移相器的相移值來進(jìn)行修正,也可用準(zhǔn)直延遲線來實(shí)現(xiàn)。
3.3.3波束躍度與移相器的虛位技術(shù)
相控陣天線波束的相控掃描依靠的是天線陣中的大量移相器,因此,移相器是饋電系統(tǒng)中的一個(gè)關(guān)鍵微波元件,與此相應(yīng),控制移相器的電路也是一個(gè)重要的電路。
按照信號(hào)相位的基本定義:
移相器可在高頻實(shí)現(xiàn),為便于用計(jì)算機(jī)控制天線波束掃描,計(jì)算機(jī)提供給移相器的控制信號(hào)是二進(jìn)制的經(jīng)過D/A變換成模擬信號(hào)后送入控制移相器。
對(duì)移相器的要求主要有以下8項(xiàng),在具體選用時(shí)必須進(jìn)行綜合考慮:
1)承受功率(包括峰值功率與平均功率)的能力2)頻率特性及帶寬性能3)低損耗4)幅度和相位精度、溫度特性和幅度穩(wěn)定性5)控制特性(對(duì)波束控制驅(qū)動(dòng)器的要求和控制的時(shí)間響應(yīng))6)工藝性、一致性和可靠性7)低成本8)體積、重量要求由于移相器要受計(jì)算機(jī)控制,以便實(shí)現(xiàn)相控陣特性波束的高速、無慣性靈活掃描、因此,數(shù)字式移相器得到了廣泛的應(yīng)用。采用數(shù)字式移相器時(shí),移相器的相移量以二進(jìn)制方式改變。當(dāng)數(shù)字式移相器的位數(shù)為K(K為正整數(shù)),則移相器的最小相移量(單位相移量)為ΔφBmin皇捷通訊專業(yè)天線研發(fā)生產(chǎn)一體www.laurenrosestyle.com
因此,相控陣特性的波束指向是離散的,隨著掃描角度的增大,相鄰波束之間的間距(波束躍度)增大。這與天線波束隨掃描角度增加而展寬是一致的。為了降低波束躍度,使天線波束掃描接近于機(jī)械式連續(xù)轉(zhuǎn)動(dòng)天線時(shí)的情況,需要增加移相器的位數(shù)K。
考慮到雷達(dá)天線波束寬度,波束躍度小于半個(gè)波束寬度是起碼的要求,由此出發(fā),對(duì)于三坐標(biāo)雷達(dá),因其波束寬度大體在1度左右,K≥8是完全必要的。對(duì)于相控陣單脈沖跟蹤雷達(dá),為了能對(duì)目標(biāo)接近于連續(xù)跟蹤,K≥10也是很有必要的,若K=10,則ΔφBmin=0.35°。顯然,要做這么多位數(shù)的移相器,要保證這樣高的移相精度是不切實(shí)際的。
為了節(jié)省數(shù)字移相器的位數(shù),同時(shí)保證所需要的小的波束躍度,采用了“虛位技術(shù)”、采用虛位技術(shù)后,增大了移相器的相位量化誤差,對(duì)副瓣電平有不良影響。在同時(shí)要求節(jié)省移相器位數(shù)和降低副瓣電平的情況下,采用“隨機(jī)饋相”方法,當(dāng)移相器的位數(shù)為n時(shí),對(duì)無限陣,可使寄生副瓣電平降低到-12×ndB。
為了降低成本,總是希望在不出現(xiàn)柵瓣或由柵瓣引起的寄生副瓣低于一定電平條件下,盡可能的減少天線陣中的移相器的數(shù)目。
縮小天線波束的掃描范圍,有利于減小天線陣中移相器的數(shù)目,因?yàn)樘炀€波束掃描范圍減小后,天線單元的間隔可以拉開,此外,對(duì)于實(shí)際的雷達(dá)來說,在某些應(yīng)用情況下,也不要求陣列天線的波束掃描范圍很寬,這時(shí)便可采用有限掃描相控陣天線或小區(qū)域相掃天線。
3.4 固態(tài)功率放大器的阻抗匹配
微波功率晶體管的輸入輸出阻抗很低,且是電抗性的,而功率相加器等傳輸線的特性阻抗通常都選定為50Ω,因此,只有將晶體管的輸入輸出阻抗在整個(gè)工作頻帶范圍內(nèi)變換為50Ω,才能獲得良好的阻抗匹配。對(duì)于相控陣?yán)走_(dá),不管是在集中式大功率發(fā)射機(jī)還是在分散式發(fā)射機(jī)中,功率放大器組件都工作在C類狀態(tài),不需要電真空放大器中所必不可少的調(diào)制器,在高頻輸入信號(hào)到達(dá)晶體管放大器輸入端,并超過基極-發(fā)射極之間的反向偏置電壓后,該放大器才起放大作用,接待廳才導(dǎo)通。在輸入脈沖信號(hào)由上升前沿至脈沖頂部,在到達(dá)脈沖后沿的整個(gè)脈沖持續(xù)期間,放大器中晶體管的工作狀態(tài)是急劇變化的(由截止到線性、飽和、再截止),因而其輸入輸出阻抗也是變化的,因?yàn)閱渭?jí)放大器的增益只有7dB左右,所以,固態(tài)放大器通常由幾個(gè)單級(jí)放大器連接組成,后面一級(jí)放大器是前面一級(jí)放大器的負(fù)載,一個(gè)單級(jí)放大器的輸入輸出阻抗的變化,將影響其前后兩級(jí)放大器的匹配。
放大器負(fù)載阻抗的變化,與放大器輸入信號(hào)電平及電源電壓的變化一樣,將使放大器輸出信號(hào)的相位發(fā)生變化,因此,當(dāng)設(shè)計(jì)固態(tài)功率放大器時(shí),再考慮其幅相一致性的公差要求情況下,應(yīng)對(duì)放大器的負(fù)載阻抗提出相應(yīng)的要求。
放大器末級(jí)輸出端通常接一個(gè)環(huán)流器,使末級(jí)功率放大器與天線負(fù)載之間隔離,以保證末級(jí)功率的負(fù)載相對(duì)穩(wěn)定,這樣,再末級(jí)功放晶體管輸出端與環(huán)流器之間再加上一段匹配傳輸線,便可保證再工作頻帶寬度內(nèi)有良好的負(fù)載阻抗匹配?;式萃ㄓ崒I(yè)天線研發(fā)生產(chǎn)一體www.laurenrosestyle.com
在相控陣?yán)走_(dá)中,當(dāng)采用集中式大功率發(fā)射機(jī)或分布式子陣發(fā)射機(jī)方案時(shí),從發(fā)射機(jī)輸出端至天線陣面都有一個(gè)發(fā)射饋電網(wǎng)絡(luò),它包括功率分配器、移相器、環(huán)流器、相位微調(diào)和收發(fā)開關(guān)等,發(fā)射饋電網(wǎng)絡(luò)的多個(gè)輸出端口與各天線單元之間也不可能做到完全匹配。天線單元之間的互耦使各天線單元的輸入阻抗不完全一致,且互耦是隨天線波束掃描方向的變化而變化的;另外,在雷達(dá)工作頻帶寬度內(nèi),饋線各節(jié)點(diǎn)的駐波及單元之間的互耦也是不同的,因此,天線單元的輸入阻抗隨天線單元的位置、天線波束指向和雷達(dá)信號(hào)的頻率而變化,而通常的饋電網(wǎng)絡(luò)中,除一部分相位微調(diào)及幅度微調(diào)器件外,并沒有可進(jìn)行阻抗匹配的自適應(yīng)調(diào)配器。除了天線單元之間存在互耦外,饋線網(wǎng)絡(luò)中各個(gè)端口或節(jié)點(diǎn)之間也可能存在互耦。皇捷通訊專業(yè)天線研發(fā)生產(chǎn)一體www.laurenrosestyle.com
采用集中式發(fā)射機(jī)或子陣式發(fā)射機(jī)的相控陣?yán)走_(dá),一部發(fā)射機(jī)要負(fù)責(zé)給整個(gè)發(fā)射相控陣天線或發(fā)射天線子陣饋電。從發(fā)射機(jī)輸出端到每一個(gè)天線單元,必須有一個(gè)發(fā)射饋線系統(tǒng),將發(fā)射機(jī)輸出信號(hào)功率分配至各個(gè)天線單元,對(duì)于接收相控陣天線,各個(gè)天線單元接收到的信號(hào),必須經(jīng)過一個(gè)接收饋線系統(tǒng)逐級(jí)相加,然后送至接收機(jī)輸入端,發(fā)射和接收饋線系統(tǒng)都由許多不同的饋線元件如功率分配器、移相器、傳輸線段、調(diào)諧元件、定向耦合器等組成,各個(gè)饋線元件的連接不可能做到完全匹配。這些連接點(diǎn)處,存在電磁波反射。各個(gè)節(jié)點(diǎn)處的多次反射波,當(dāng)重新到達(dá)天線單元(對(duì)發(fā)射陣)或接收機(jī)輸入端(對(duì)接收機(jī))時(shí),這些反射波與主入射波疊加,對(duì)發(fā)射陣來說,使各個(gè)天線單元輻射出去的信號(hào)的相位和幅度發(fā)生變化;對(duì)接收機(jī)而言,則使從各個(gè)天線單元接收到的信號(hào)到達(dá)接收機(jī)輸入端時(shí)產(chǎn)生相位和幅度的起伏,因此,對(duì)于天線的饋電系統(tǒng)是必須要仔細(xì)調(diào)試的。
皇捷通訊專業(yè)天線研發(fā)生產(chǎn)一體www.laurenrosestyle.com
The post 寬頻帶微帶天線技術(shù)知識(shí)梳理 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 新型C波段寬帶小型化全向天線設(shè)計(jì) appeared first on 東莞市皇捷通訊科技有限公司.
]]>微波全向天線較多應(yīng)用于一點(diǎn)多址通信中,廣泛地應(yīng)用于軍事、航天、遙控、遙測(cè)領(lǐng)域。在較低頻段中,微波全向天線主要有螺旋天線、交叉饋電式天線、波導(dǎo)縫隙天線;而隨著現(xiàn)代通信技術(shù)的發(fā)展,通信頻率向更高的波段發(fā)展已是必然趨勢(shì),在C波段或更高的頻段,波長(zhǎng)很短,以上提到的天線由于結(jié)構(gòu)復(fù)雜,導(dǎo)致加工費(fèi)用高,調(diào)試?yán)щy,并且饋電結(jié)構(gòu)也難于設(shè)計(jì),使得天線的帶寬較窄;同時(shí)這些類型的天線高度均超過半波長(zhǎng)或者四分之一波長(zhǎng),天線高度太大導(dǎo)致其占用的體積空間較大,并且天線RCS(雷達(dá)散射截面)也較大,對(duì)各類載體平臺(tái)的電磁隱身特性也帶來較大影響。
考慮到上述情況,有必要為實(shí)際通信平臺(tái)開發(fā)一種全向天線,即新型C波段寬帶小型化全向天線,它能夠提供比現(xiàn)有天線更理想的電磁特性,本文將詳細(xì)討論該天線的性能及主要結(jié)構(gòu)參數(shù)對(duì)天線性能的影響,并對(duì)天線的阻抗及輻射特性進(jìn)行分析。
2? 天線基本結(jié)構(gòu)及輻射原理
新型C波段寬帶小型化全向天線共形全向天線示意如圖1、圖2所示,圖1為天線本身的外形結(jié)構(gòu),圖2為天線剖面圖。從圖中可以看出,該天線是由金屬圓盤、金屬單極子、介質(zhì)墊片、方形金屬地板以及同軸饋電連接器共同構(gòu)成。
圖1 ?天線示意圖
圖2 ?天線剖面圖
金屬圓盤半徑r1、厚度h1,金屬單極子半徑r2、高度h2,它們加工為一個(gè)整體;金屬單極子中部有螺紋孔;聚四氟乙烯介質(zhì)墊片為一個(gè)類似“瓶蓋”的腔體結(jié)構(gòu),半徑r3、厚度h3,中間有通孔使得同軸內(nèi)芯通過,其下部腔體尺寸可使得同軸連接器剛好深入其內(nèi)部;方形金屬地板中間有通孔使得連接器外導(dǎo)體通過;同軸連接器為市售產(chǎn)品,選用的是N型同軸連接器N-50KF-C,其特殊之處在于伸出的內(nèi)芯有螺紋,它可以直接穿過介質(zhì)墊片上的通孔與金屬單極子中部的螺紋孔旋擰在一起,從而使得整個(gè)天線成為一個(gè)整體。
在本設(shè)計(jì)中,天線金屬圓盤及金屬單極子是起輻射作用的最主要部件,用于向空間輻射電磁波。當(dāng)發(fā)射信號(hào)時(shí),同軸連接器通過連接的同軸電纜輸入外接發(fā)射機(jī)的發(fā)射信號(hào),同軸接頭輸出的能量激起金屬圓盤及金屬單極子上的表面電流,從而產(chǎn)生輻射;由于所采用的金屬單極子直徑較大,使得天線可以發(fā)射較寬帶寬范圍內(nèi)的垂直極化電磁波;由于金屬單極子頂端接入了金屬圓盤,這使得天線頂端的電流不為零,有效的實(shí)現(xiàn)了天線的小型化;由于介質(zhì)墊片為腔體結(jié)構(gòu),分隔開天線的輻射結(jié)構(gòu)與金屬地板,使得同軸電纜能夠有效的激勵(lì)天線電流;金屬圓盤、金屬單極子及介質(zhì)墊片在結(jié)構(gòu)上均成中心軸對(duì)稱分布,可以使得天線在水平面360度范圍內(nèi)輻射場(chǎng)均勻分布。
3? 主要結(jié)構(gòu)參數(shù)對(duì)于天線阻抗特性的影響
反射損耗是天線的一個(gè)重要性能參數(shù),它決定了天線的阻抗特性。在設(shè)計(jì)過程中發(fā)現(xiàn),影響該天線反射損耗性能的主要結(jié)構(gòu)參數(shù)為金屬圓盤半徑r1、厚度h1,金屬單極子半徑r2、高度h2。通過多組建模仿真,可以得到各個(gè)參數(shù)對(duì)于天線反射損耗的影響規(guī)律,以便于實(shí)際天線的設(shè)計(jì)實(shí)現(xiàn)。
3.1? 金屬圓盤半徑r1對(duì)反射損耗的影響
作為最主要的輻射結(jié)構(gòu),金屬圓盤的尺寸在很大程度上決定了天線的諧振頻率,圖3是針對(duì)不同的金屬圓盤半徑r1反射損耗隨頻率的變化曲線。隨著半徑的增大,天線的諧振頻率逐漸向低頻端偏移,與一般的單偶極子天線類似,輻射體尺寸與天線頻率呈現(xiàn)出相反的變化規(guī)律。
圖3 ?反射損耗與r1的關(guān)系 3.2? 金屬圓盤厚度h1對(duì)反射損耗的影響
圖4是針對(duì)不同的金屬圓盤厚度h1反射損耗隨頻率的變化曲線。從圖中可以看出,金屬圓盤的厚度同樣會(huì)影響天線的諧振頻率,隨著厚度的增大,天線的諧振頻率逐漸向低頻端偏移,與金屬圓盤半徑類似,該尺寸的大小與天線頻率高低呈現(xiàn)出相反的變化規(guī)律。
圖4 ?反射損耗與h1的關(guān)系
3.3? 金屬單極子半徑r2對(duì)反射損耗的影響
金屬單極子不僅是該天線的輻射結(jié)構(gòu),同時(shí)它還作為過渡部件連接金屬圓盤及饋入電流的同軸連接器。圖5是針對(duì)不同的金屬單極子半徑r2反射損耗隨頻率的變化曲線。從圖中可以看出,該半徑不僅影響諧振點(diǎn)位置,還在很大程度上影響反射損耗的大小,如果該半徑過大,則反射損耗很大,即C波段在同軸接頭饋入天線的能量大部分都被反射,使得天線無法正常工作;從安裝角度考慮,若該半徑過小,則輻射結(jié)構(gòu)沒有辦法與同軸連接器的螺紋內(nèi)芯連接,所以在天線尺寸的設(shè)計(jì)上要綜合考慮天線性能及安裝結(jié)構(gòu)。
圖5 ?反射損耗與r2的關(guān)系
3.4? 金屬單極子高度h2對(duì)反射損耗的影響
圖6是針對(duì)不同的金屬單極子高度h2反射損耗隨頻率的變化曲線。從圖中可以看出,金屬單極子的高度會(huì)在很大程度上影響天線的諧振頻率,隨著高度的增大,天線的諧振頻率逐漸向低頻端偏移,與普通單極子尺寸與頻率的對(duì)應(yīng)關(guān)系一致。
圖6 ?反射損耗與h2的關(guān)系
4? 天線性能分析
在上述分析的基礎(chǔ)上,應(yīng)用仿真軟件HFSS對(duì)天線參數(shù)進(jìn)行了逐一的調(diào)整,最后得出了性能最優(yōu)結(jié)構(gòu)參數(shù),最終天線地板以上的總體高度h1+h2+h3僅為最低工作頻率fL所對(duì)應(yīng)波長(zhǎng)的八分之一左右,現(xiàn)對(duì)其性能進(jìn)行如下分析。
4.1? 天線的阻抗特性
前面已經(jīng)提到過,天線的反射損耗是一個(gè)重要性能參數(shù),它反映了天線的阻抗特性。圖7給出了該C波段寬帶小型化全向天線反射損耗的結(jié)果。在fL?~?fH的頻率范圍內(nèi),天線反射損耗的仿真結(jié)果均小于-10dB,這種全向天線阻抗特性良好,它具有45%左右的阻抗帶寬。
圖7 ?天線的反射損耗
4.2? 天線的輻射特性
對(duì)于全向天線,增益特性是衡量其性能好壞的重要指標(biāo),圖8是該天線的增益隨頻率的變化關(guān)系(fL?~?fH)。頻率在fL?~?fH范圍內(nèi),增益變化范圍是3.5~6dB,變化幅度小于2.5dB,增益在頻帶內(nèi)較為穩(wěn)定;天線的方向圖是表征天線輻射特性與空間角度關(guān)系的圖形,圖9表示該天線在頻率分別為fL、(fL+fH)/2、fH時(shí)水平面方向圖的結(jié)果。在各個(gè)頻率上,該天線水平面近似全向輻射,不圓度小于2dB,方向圖穩(wěn)定性較好。
圖8 ?天線的增益
圖9 ?天線的方向圖 天線的拓展應(yīng)用
本文設(shè)計(jì)的天線結(jié)構(gòu)可采用方形金屬地板,且尺寸可根據(jù)應(yīng)用需求適當(dāng)調(diào)整;同時(shí),也可根據(jù)實(shí)際需求在一定尺寸范圍內(nèi)采用圓形地板或者異形地板,參見圖10,地板形狀改變,基本不會(huì)影響天線性能。此外,本天線應(yīng)用場(chǎng)合靈活,它可單獨(dú)作天線用,也可用作反射面天線的饋源或者陣列的單元,尤其適用于作八木天線的有源振子,參見圖11,該天線本身前后適當(dāng)位置加入引向金屬棍和反射金屬棍即可以有效縮小八木天線的總體高度。
圖10 ?地板為圓形時(shí)的天線結(jié)構(gòu)
圖11 ?天線作為八木天線有源振子的結(jié)構(gòu)
6? 結(jié)論
本文所論述天線與現(xiàn)有技術(shù)相對(duì)照,其效果是積極和明顯的。天線的工作頻段為C波段,本身高度僅為最低工作頻率所對(duì)應(yīng)波長(zhǎng)的1/8左右;天線相對(duì)帶寬約為45%,在頻段內(nèi)可以良好的與50Ω同軸電纜匹配;天線在水平面360度的范圍內(nèi)輻射場(chǎng)均勻全向分布,不圓度小于2dB;此外,本天線結(jié)構(gòu)靈活,除了可采用方形地板,還可在一定尺寸范圍內(nèi)采用圓形或者異形地板,并且天線可以作為八木天線的有源振子使用,有效縮小八木天線的總體尺寸。
The post 新型C波段寬帶小型化全向天線設(shè)計(jì) appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 一種采用線極化方式的小型化GPS錐面共形天線陣 appeared first on 東莞市皇捷通訊科技有限公司.
]]>在航空器、導(dǎo)彈等高速飛行器上,全球定位系統(tǒng)GPS是不可或缺的組件,它廣泛應(yīng)用于導(dǎo)航、測(cè)繪、監(jiān)測(cè)、授時(shí)、通信等多種領(lǐng)域。而在GPS系統(tǒng)的研究開發(fā)過程中,天線成為必須解決的關(guān)鍵問題之一。這些飛行器要求天線既不影響其空氣動(dòng)力性能,又不破壞其機(jī)械結(jié)構(gòu)和強(qiáng)度。所以,具有低剖面、易集成等突出性能優(yōu)點(diǎn)的共形天線陣在飛行器上得到廣泛應(yīng)用。
目前,對(duì)于錐面共形天線陣的研究報(bào)道非常多。提出了一種錐面共形天線陣的分析方法,研究了一種毫米波段錐面共形天線陣。對(duì)于上述錐面共形天線陣,工作頻率較高,尺寸上基本不受限制,相鄰單元的弧面間距大于或者接近天線工作頻率的半波長(zhǎng)。但是在天線尺寸受限的情況下,相鄰單元的弧面間距如果小于半波長(zhǎng),單元間的耦合加劇,天線陣的電壓駐波比就會(huì)急劇惡化,輻射特性也會(huì)有劇烈的起伏,極不穩(wěn)定。所以在GPS頻段,天線尺寸受到共形體錐面表面積的限制,天線的小型化成為設(shè)計(jì)中的核心問題。眾所周之,GPS天線是右旋圓極化天線,但是考慮到小型化的要求,為了滿足輻射特性,采用線極化天線可以減小3dB的損耗。所以本文設(shè)計(jì)出了一種采用線極化方式的小型化GPS錐面共形天線陣,在減小天線尺寸的同時(shí)提高了天線的性能。
2 ?設(shè)計(jì)要求
天線要求共形安裝在如圖1所示的錐臺(tái)上,錐臺(tái)上底面圓周長(zhǎng)約為0.26λ0(λ0為天線中心頻率的波長(zhǎng)),下底面圓周長(zhǎng)約為0.67λ0,錐臺(tái)母線長(zhǎng)H約為0.24λ0,工作頻率為f0=1.575GHz,天線輻射的H面方向圖要求全向。
經(jīng)分析,由于天線安裝面面積極小,天線陣只能采用2單元微帶共形結(jié)構(gòu),陣元弧面間距僅為0.25λ0,遠(yuǎn)小于天線工作頻率的半波長(zhǎng),陣元間耦合強(qiáng)烈,并且天線要求水平全向輻射,這使得天線設(shè)計(jì)實(shí)現(xiàn)小型化,保證中心頻率并穩(wěn)定天線輻射性能成為首要設(shè)計(jì)要求。
圖1 ?天線安裝錐臺(tái)示意圖
3 ?理論分析與設(shè)計(jì)
本文先利用一般微帶天線的設(shè)計(jì)方法設(shè)計(jì)天線單元,并對(duì)饋電方式進(jìn)行改進(jìn),利用Ansoft HFSS軟件對(duì)天線單元進(jìn)行仿真優(yōu)化設(shè)計(jì),大大降低了天線陣的設(shè)計(jì)復(fù)雜度。
3.1 ?天線單元的分析與設(shè)計(jì)
在天線的設(shè)計(jì)中考慮到安裝平臺(tái)的尺寸限制,本文采用er=10.2的高介電常數(shù)柔性介質(zhì)基片,介質(zhì)厚度為h=0.6mm,矩形微帶天線的尺寸公式為[5]:
(1)
(2)
式中f0為天線工作的中心頻率,c為光速(3×108m/s) 。而al為微帶傳輸線的等效伸長(zhǎng)量,可由下式求得:
(3)
er為介質(zhì)基片的有效介電常數(shù),由邊緣效應(yīng)決定,可由下式求得:
(4)
圖2 ?天線單元結(jié)構(gòu)示意圖 考慮到天線需要共形在錐面上,饋線如果太細(xì),那么在實(shí)際加工及調(diào)試過程中就會(huì)比較容易被折斷,所以考慮到這些問題,根據(jù)微帶線特性阻抗設(shè)計(jì)公式計(jì)算,在er=10.2,基片厚度為0.6mm的情況下,輸入阻抗為50Ω的饋線寬度為0.6mm;輸入阻抗為20Ω的饋線寬度為2.5mm。顯然在20Ω時(shí)的饋線就比較不容易被折斷,所以本文設(shè)計(jì)單元的輸入阻抗為20Ω。
通過在天線單元邊緣開槽使微帶饋線深入單元內(nèi)部的方法,能夠很好的調(diào)節(jié)單元的阻抗特性,實(shí)現(xiàn)天線單元的匹配,并能有效降低單元的尺寸。 天線單元的結(jié)構(gòu)示意圖如圖2所示,其中Wf為單元饋線的寬度,Ws為槽寬度,Ls為槽深。
3.2 ?饋電網(wǎng)絡(luò)的設(shè)計(jì)
微帶天線陣的饋電方式主要包括串饋、并饋、反射陣面饋電等,并聯(lián)饋電方式中的T型結(jié)功分器具有結(jié)構(gòu)簡(jiǎn)單、占據(jù)空間小、容易實(shí)現(xiàn)寬頻帶等突出優(yōu)點(diǎn)[6],因此,設(shè)計(jì)中采用由T型結(jié)功分器構(gòu)成的并聯(lián)饋電網(wǎng)絡(luò),使用等幅同相饋電方式。天線單元的輸入阻抗為20Ω,陣列總端口的輸入阻抗為50Ω,所以首先要利用λ/4阻抗變換線,使20Ω與100Ω阻抗相匹配,通過計(jì)算得出λ/4阻抗變換傳輸線的特性阻抗約等于45Ω,寬度為0.7mm。
通過饋電網(wǎng)絡(luò)的有效彎折和總體合理布局可大大減小天線陣的大小,圖3給出了天線陣饋電網(wǎng)絡(luò)示意圖。
圖3 ?天線陣饋電網(wǎng)絡(luò)示意圖
4 ?天線陣實(shí)測(cè)結(jié)果
本文根據(jù)天線的設(shè)計(jì)和仿真,研制出小型化GPS錐面共形天線陣的試驗(yàn)樣機(jī),并用金屬椎體模擬了真實(shí)彈頭,對(duì)研制的天線進(jìn)行了電特性測(cè)量[7]。圖4所示的是天線陣樣機(jī)平面圖。
圖4 ?天線陣樣機(jī)平面圖
在微波暗室、遠(yuǎn)區(qū)條件下,用自制的天線遠(yuǎn)場(chǎng)自動(dòng)測(cè)量系統(tǒng)在f0=1.575GHz時(shí)對(duì)該天線的E面和H面方向圖進(jìn)行了實(shí)測(cè),如圖5所示。
a 天線陣的E面方向圖
b 天線陣的H面方向圖
圖5 ?天線的實(shí)測(cè)方向圖
從圖5a和5b中可以看出,天線陣的E面方向圖近似為偏向于共形體底部的一個(gè)“8”字形,H面方向圖近似全向,滿足工程設(shè)計(jì)要求。
圖6 ?天線陣實(shí)測(cè)駐波曲線
圖6所示的是使用HP8753D矢量網(wǎng)絡(luò)分析儀對(duì)天線進(jìn)行駐波系數(shù)(VSWR)測(cè)量的結(jié)果。由圖6可以看出天線陣的駐波系數(shù)小于2的帶寬為9MHz,在工作頻率f0=1.575GHz時(shí),天線陣駐波系數(shù)為1.1。
5 ?結(jié)束語
本文研究了小型化GPS錐面共形天線陣,文中通過調(diào)整單元的輸入阻抗解決了天線饋線由于過細(xì)易折斷的問題,并進(jìn)一步縮小了單元尺寸且在陣元耦合強(qiáng)烈的情況下保證了中心頻率,而且穩(wěn)定了天線的輻射性能,實(shí)現(xiàn)了水平全向輻射的工程要求。我們研制出了共形在彈頭錐體上的小型化GPS共形天線陣實(shí)驗(yàn)樣機(jī),并進(jìn)行了實(shí)測(cè),其測(cè)量結(jié)果研究成果可應(yīng)用于工程實(shí)際,且具有很高的實(shí)用價(jià)值和推廣價(jià)值。
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 一種采用線極化方式的小型化GPS錐面共形天線陣 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 大規(guī)模MIMO的原型制作 appeared first on 東莞市皇捷通訊科技有限公司.
]]>這種概念要求基站部署極大規(guī)模的天線陣列,可能包含成百上千的收發(fā)器。此概念稱為大規(guī)模MIMO。的確,大規(guī)模MIMO 脫離了當(dāng)前的網(wǎng)絡(luò)拓補(bǔ),可能是解決我們所面對(duì)的無線數(shù)據(jù)挑戰(zhàn)的關(guān)鍵;然而,在認(rèn)知大規(guī)模MIMO 廣泛部署的效能和/ 或可行性的過程中,出現(xiàn)了一個(gè)值得關(guān)注的問題,有人會(huì)創(chuàng)建一個(gè)原型,只為確定它是否真正行之有效嗎?畢竟,創(chuàng)建一個(gè)具有上千天線的原型會(huì)帶來若干工程上的挑戰(zhàn),另外還有其他不可忽視的問題,即成本和時(shí)間。
圖1. 2 天線MIMO 收發(fā)器。
MIMO背景
MIMO 依賴多路來提高無線數(shù)據(jù)鏈路的可靠性以及有效數(shù)據(jù)率,通常使用數(shù)根獨(dú)立天線獲得多個(gè)數(shù)據(jù)流。多路傳播是通信系統(tǒng)面臨的巨大挑戰(zhàn),實(shí)踐中采用MIMO,運(yùn)用空間- 時(shí)間編碼和/ 或空間分集等多種技術(shù)。4G 移動(dòng)通信標(biāo)準(zhǔn)LTE-A 規(guī)定MIMO 組態(tài)最多使用8 根天線。IEEE 802.11n/ac 標(biāo)準(zhǔn)以及這些標(biāo)準(zhǔn)的實(shí)際商業(yè)化均普遍使用MIMO。
基本上,更多天線會(huì)給傳播通道帶來更高的自由度,從而在數(shù)據(jù)率和/ 或鏈路可靠性方面擁有更高的性能。然而,總體數(shù)據(jù)率仍然受到香農(nóng)理論的限制。在多個(gè)用戶組成的網(wǎng)絡(luò)中,增大總體網(wǎng)絡(luò)吞吐量的一種方法是多用戶MIMO(MU-MIMO),其中,多個(gè)用戶可以同時(shí)訪問同一時(shí)頻資源,但是通過多根天線產(chǎn)生的多“空間維度”實(shí)現(xiàn)隔離。
更多天線,更大容量,更高的可靠性
增大MU-MIMO 的規(guī)模, 稱為大規(guī)模MIMO,可以提供更大的網(wǎng)絡(luò)容量、更高的可靠性,并通過降低一個(gè)蜂窩或服務(wù)地區(qū)的總發(fā)射功率而提高大規(guī)模MIMO 基站的能量效率。理論上,每根天線的發(fā)射功率能夠低于以相同數(shù)據(jù)率為指定蜂窩或者地區(qū)服務(wù)的單根天線的發(fā)射功率。即,總功率為:
PTotMM ~ PT NT
其中,PTotMM 是每個(gè)地區(qū)的總傳輸功率,PT 是每根天線的功率,NT 是發(fā)射天線的數(shù)目。其中,PTotMM 低于單天線系統(tǒng)的PTot。與單天線系統(tǒng)相比,為了達(dá)到相同的可靠性和/ 或吞吐量,由于大規(guī)模MIMO 基站能夠憑借其更高的自由度而將發(fā)射的能量聚焦于目標(biāo)用戶,所以大規(guī)模MIMO 蜂窩拓補(bǔ)能夠降低分區(qū)地域的總發(fā)射功率。另外,當(dāng)使用多根天線時(shí),從發(fā)射器至接收器的正確位發(fā)射概率會(huì)增大,因?yàn)殒溌分袛喔怕蕕 1 / SNR NT NR。
其中,SNR 是信噪比,NR 是接收天線的數(shù)目,NT 是發(fā)射天線的數(shù)目。由于此關(guān)系,當(dāng)系統(tǒng)中的天線數(shù)目增加時(shí),鏈路中斷概率會(huì)降低,從而提高了通信鏈路可靠性。[1]
大規(guī)模MIMO 天線陣列基于這里所述的基本概念,按照理論,數(shù)百倍規(guī)模的天線部署將獲得比當(dāng)前MIMO 點(diǎn)對(duì)點(diǎn)部署更高的效率。具體來說,憑借數(shù)百根天線,天線孔徑和部署網(wǎng)格均有精細(xì)的多的分辨率。配合波束成形,能夠更加精細(xì)地控制天線波瓣,以降低通道中的能量。
大規(guī)模MIMO 系統(tǒng)也有其挑戰(zhàn)。一個(gè)挑戰(zhàn)是尋找從接收器到發(fā)射器的通道狀態(tài)信息通信方法,以進(jìn)行預(yù)編碼。鑒于有數(shù)百根天線,通過導(dǎo)頻信號(hào)來推論通道狀態(tài)在實(shí)踐中是不可行的。因此,目前實(shí)現(xiàn)的大規(guī)模MIMO只能實(shí)際使用依賴于通道互易的時(shí)分雙工(TDD)系統(tǒng),然而要確定此方法的可行性,還需要進(jìn)行更多研究。另外,一些初步研究提出,系統(tǒng)中的熱噪聲對(duì)于如此之多的天線來說不必過于關(guān)注,并且干擾器的影響成為更大的問題。這些挑戰(zhàn)以及其他挑戰(zhàn),可以在開發(fā)出有效的原型之后使用實(shí)際波形來進(jìn)行研究。
2. M 用戶N 天線大規(guī)模MIMO 系統(tǒng)。
圖3. 典型1×1 軟件定義無線電體系結(jié)構(gòu)。
大規(guī)模MIMO系統(tǒng)的原型制作
制作大規(guī)模MIMO 系統(tǒng)的原型需要預(yù)先進(jìn)行許多工作,以便仔細(xì)、恰當(dāng)?shù)卦O(shè)計(jì)實(shí)際運(yùn)作系統(tǒng)。大多數(shù)研究人員會(huì)發(fā)現(xiàn),甚至制作只有2 天線的最低組態(tài)MIMO 收發(fā)器系統(tǒng)也是極具挑戰(zhàn)性的(參見圖1)。為設(shè)計(jì)大規(guī)模MIMO 原型,首先繪制系統(tǒng)草圖(參見圖2)。在本練習(xí)中,基站處的天線數(shù)目N 為128,從而獲得128×128 MIMO 組態(tài)。組態(tài)假設(shè)M個(gè)移動(dòng)用戶使用SISO 天線。
在設(shè)計(jì)大規(guī)模MIMO 系統(tǒng)時(shí),需要考慮許多事項(xiàng),包括發(fā)射功率、相鄰?fù)ǖ栏蓴_、頻譜罩等RF 系統(tǒng)參數(shù)。然而,大規(guī)模MIMO 系統(tǒng)需要考慮的一個(gè)關(guān)鍵參數(shù)是每根天線的數(shù)字?jǐn)?shù)據(jù)吞吐量。從圖中可知,系統(tǒng)最具挑戰(zhàn)性的一個(gè)方面是將所有接收到的樣本聚合到公共處理子系統(tǒng)內(nèi)。與使用SISO 無線電的簡(jiǎn)單發(fā)射和接收通信不同,大規(guī)模MIMO 要求發(fā)射和接收元件之間擁有高速數(shù)據(jù)吞吐,以及高基帶,并且其數(shù)量級(jí)高于目前部署的系統(tǒng)。
可以選擇在靠近天線處的節(jié)點(diǎn),以分布方式處理數(shù)據(jù)流,但是為了恢復(fù)從不同用戶處收到的信號(hào),或者有效地為不同用戶進(jìn)行信號(hào)預(yù)編碼,必須將從各個(gè)天線接收到的數(shù)據(jù)流聚集在一個(gè)公共位置,以獲得最優(yōu)性能。通過仔細(xì)觀察吞吐量和數(shù)據(jù)要求,我們將系統(tǒng)分成基本元件。這樣,我們就可以在原型的實(shí)際構(gòu)建中量化數(shù)據(jù)率,并在系統(tǒng)設(shè)計(jì)、集成、功率和成本之間取得平衡。
基線系統(tǒng)參數(shù)
典型SISO 無線電如圖3 所示。在該圖中,RF 信號(hào)下變頻或混合,濾波,放大,然后轉(zhuǎn)化為數(shù)字?jǐn)?shù)據(jù)。發(fā)射過程的次序則相反。大規(guī)模MIMO系統(tǒng)包含數(shù)百個(gè)這種基本SISO 元。為了使用現(xiàn)貨供應(yīng)設(shè)備,以降低成本和加快原型開發(fā),假設(shè)每個(gè)同相正交樣本均為16 位。位數(shù)決定了動(dòng)態(tài)范圍,實(shí)際上對(duì)于原型來說過好了。減少分辨率位數(shù)會(huì)顯著降低數(shù)據(jù)吞吐量,特別是在聚集極多通道的時(shí)候。雖然16 位會(huì)增加數(shù)據(jù)路徑,并最終增加數(shù)據(jù)吞吐量要求——位數(shù)更多會(huì)導(dǎo)致數(shù)據(jù)路徑加寬和數(shù)據(jù)吞吐量要求增加——然而,現(xiàn)貨供應(yīng)組件和編程體系結(jié)構(gòu)不需要進(jìn)行自定義就能夠輕
松處理16 位樣本。
接下來考慮采樣率。接收鏈中的每個(gè)模數(shù)轉(zhuǎn)換器(ADC)均必須以高于尼奎斯特通道帶寬的速率對(duì)下變頻波形進(jìn)行采樣。本例以LTE 作為基線,普通移動(dòng)通信場(chǎng)景,每個(gè)轉(zhuǎn)換器均以30.72 MS/s 的采樣率對(duì)接收到的波形進(jìn)行采樣。實(shí)際上,轉(zhuǎn)換器可以對(duì)信號(hào)進(jìn)行過采樣,以提高分辨率,但是這會(huì)增加信號(hào)處理量,以便將數(shù)據(jù)率轉(zhuǎn)換到標(biāo)準(zhǔn)信號(hào)處理模塊可以接受的數(shù)據(jù)流。數(shù)據(jù)吞吐量使用下述方程得到:(2 個(gè)樣本)(16 位/ 樣本或者2字節(jié)/ 秒)(采樣率)
對(duì)于上例:
(2 個(gè)樣本)(2 字節(jié)/ 秒)(30.72)= 122.88 MB/s對(duì)于上例系統(tǒng),一個(gè)通道的聚集數(shù)據(jù)吞吐量等于122.88 MB/s。為擴(kuò)大到大規(guī)模MIMO 系統(tǒng),可以按照下文所述計(jì)算有效速率:總系統(tǒng)吞吐量(TST)=(吞吐率/ 通道)(天線數(shù)目)TST =(122.88 MB/s)(128)TST = 15.7 GB/s
這樣,如果所有通道均同時(shí)發(fā)射或接收,那么中央處理系統(tǒng)的數(shù)據(jù)吞吐量將為15.7 GB/s。另外,將所有這些數(shù)據(jù)聚集到中央處理系統(tǒng)中,還要求處理引擎能夠接受此龐大的數(shù)據(jù)量,并且能夠進(jìn)一步處理數(shù)據(jù),以便生成通信鏈路。上述簡(jiǎn)要分析揭示了兩個(gè)挑戰(zhàn)。首先,極少(如果有的話)低成本市售技術(shù)能夠滿足這些要求。其次,原型的數(shù)據(jù)量要求開發(fā)備選信號(hào)處理鏈分割技術(shù),包括分布式實(shí)現(xiàn)和并行實(shí)現(xiàn)。
通過審查可用的原型制作技術(shù),我們提出了一種可以用作大規(guī)模MIMO 原型構(gòu)建數(shù)據(jù)框架的高速串行總線的簡(jiǎn)要研究。
表1 概述了目前的一些市售高速總線技術(shù)。當(dāng)然還有其他總線,然而上表提供的是目前常用的許多標(biāo)準(zhǔn)而非專有總線技術(shù)的指南。另外,這些總線技術(shù)已經(jīng)用于許多模塊化體系結(jié)構(gòu),例如PXIe,基本上基于PCIe 標(biāo)準(zhǔn)。應(yīng)該考慮的一個(gè)規(guī)格是潛伏時(shí)間。潛伏時(shí)間是指發(fā)射與接收操作之間的周轉(zhuǎn)時(shí)間。如果原型是用于單向鏈路,那么潛伏時(shí)間不是特別重要。然而,對(duì)于真正的TDD 大規(guī)模MIMO 原型,必須考慮潛伏時(shí)間,因?yàn)橹芷跁r(shí)間比無線通道的相干時(shí)間更短,從而下行鏈路預(yù)編碼不是基于已經(jīng)過時(shí)的通道信息,這是至關(guān)重要的。上文給出的潛伏時(shí)間規(guī)格為近似值。然而,一般來說,以太網(wǎng)的潛伏時(shí)間并非決定性的,可能會(huì)發(fā)生極大的變化。另一方面,以太網(wǎng)的實(shí)現(xiàn)一般成本較低。
應(yīng)該指出,PCIe Gen 3 實(shí)現(xiàn)剛剛在市場(chǎng)上出現(xiàn),實(shí)際吞吐數(shù)據(jù)測(cè)量值并不可用。另外應(yīng)該指出,雖然基本提供了最大/ 峰值數(shù)據(jù)率,然而由于成本、IP 核的尺寸,以及功率等原因,實(shí)際實(shí)現(xiàn)了總線的典型實(shí)現(xiàn)是不同的。所提供的典型數(shù)目?jī)H供參考,因?yàn)闃O少的(如果有的話)實(shí)現(xiàn)達(dá)到了所發(fā)布的最大速率。
圖4 所示是一個(gè)使用PXIe 的系統(tǒng)配置實(shí)例。在此組態(tài)中,總共使用了10 塊底板來實(shí)現(xiàn)128 根天線的大規(guī)模MIMO 系統(tǒng)。系統(tǒng)用2 塊“主”底板來聚集數(shù)據(jù),用8 塊底板來安裝128 個(gè)能夠在蜂窩帶進(jìn)行發(fā)射和接收的收發(fā)器(NI 5791 RF 收發(fā)器)。數(shù)據(jù)基干使用PCI Express Gen 2 ×8,通過合適的分割輕松采集和發(fā)射20MHz RF 帶寬數(shù)據(jù)。[2,3]
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 大規(guī)模MIMO的原型制作 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 一種簡(jiǎn)易短波環(huán)形天線(magnetic loop)的制作實(shí)例 appeared first on 東莞市皇捷通訊科技有限公司.
]]>成品如圖1。
圖1
國(guó)外資料推薦使用直徑10mm紫銅管彎成直徑為85-90cm環(huán)形作為初級(jí)線圈,考慮到重量,操作方便等因素,從銅鋁材商店購(gòu)進(jìn)直徑為13mm的紫銅管2.8m,彎成直徑為87cm的銅環(huán)。同時(shí),采用1m的50塑料管支撐銅環(huán)。這是銅環(huán)上部的固定點(diǎn)(圖2)
圖2
銅環(huán)下部的固定點(diǎn)(圖3)。這里要注意的是要在銅管的兩端鉆好小洞,小洞可以擰上螺絲并可固定小焊片。銅環(huán)兩端固定完畢后,固定好焊接好引線的焊片,并將引線引出塑料管。
圖3
制作一個(gè)木板支架(圖4),注意要非常牢靠。
圖4
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 一種簡(jiǎn)易短波環(huán)形天線(magnetic loop)的制作實(shí)例 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 一種FM收音機(jī)接收機(jī)解決方案 appeared first on 東莞市皇捷通訊科技有限公司.
]]>本文將介紹一種FM收音機(jī)接收機(jī)解決方案,它將天線集成或嵌入在便攜式設(shè)備內(nèi)部,使得耳機(jī)線成為可選件。我們首先從最大化接收靈敏度講起,然后介紹取得最大化靈敏度的方法,包括最大化諧振頻率的效率,最大化天線尺寸,以及利用可調(diào)諧匹配網(wǎng)絡(luò)最大化整個(gè)調(diào)頻帶寬上的效率。最后,本文還將給出可調(diào)諧匹配網(wǎng)絡(luò)的實(shí)現(xiàn)方法。
最大化靈敏度
靈敏度可以被定義為調(diào)頻接收系統(tǒng)可以接收到的、同時(shí)能達(dá)到一定程度信噪比(SNR)的最小信號(hào)。這是調(diào)頻接收系統(tǒng)性能的一個(gè)重要參數(shù),它與信號(hào)和噪聲都有關(guān)系。接收信號(hào)強(qiáng)度指示器(RSSI)只是指出了特定調(diào)諧頻率點(diǎn)的射頻信號(hào)強(qiáng)度,它并不提供有關(guān)噪聲或信號(hào)質(zhì)量的任何信息。在比較不同天線下接收機(jī)性能時(shí),音頻信噪比(SNR)也許是一個(gè)更好的參數(shù)。因此,想為聆聽者帶來高質(zhì)量的音頻體驗(yàn),使SNR最大化非常重要。
天線是連接射頻電路與電磁波的橋梁。就調(diào)頻接收而言,天線就是一個(gè)變換器,即將能量從電磁波轉(zhuǎn)換成電子電路(如低噪聲放大器(LNA))可以使用的電壓。調(diào)頻接收系統(tǒng)的靈敏度直接與內(nèi)部LNA接收的電壓相關(guān)。為了最大化靈敏度,必須盡量提高這個(gè)電壓。
市場(chǎng)上有各種各樣的天線,包括耳機(jī)、短鞭、環(huán)路和芯片型天線等,但所有天線都可以用等效電路進(jìn)行分析。圖1給出了一種通用的等效天線電路模型:
在圖1中,X可以是一個(gè)電容或一個(gè)電感。X的選擇取決于天線拓?fù)?,其電抭(感抗或容抗)值與天線幾何形狀有關(guān)。損耗電阻Rloss與天線中以熱能形式散發(fā)的功耗有關(guān)。幅射電阻Rrad與從電磁波產(chǎn)生的電壓有關(guān)。為了便于說明,后文將以環(huán)路天線模型作為分析對(duì)象,同樣的計(jì)算也可以用于其他類型的天線,如短的單極天線和耳機(jī)天線。
圖1:天線等效電路模型。
使諧振頻率點(diǎn)的效率最大化
為了盡量提高天線轉(zhuǎn)換出來的能量,可以使用一個(gè)諧振網(wǎng)絡(luò)來抵消天線的電抗性阻抗,而這種阻抗會(huì)衰減天線傳導(dǎo)到內(nèi)部LNA的電壓值。對(duì)電感性環(huán)路天線來說,電容Cres用來使天線在想要的頻率點(diǎn)發(fā)生諧振:
(1)
諧振頻率是指天線將電磁波轉(zhuǎn)換成電壓的效率最高的頻率點(diǎn)。天線效率是Rrad上的功率與天線收到的總功率的比值,可以表示為Rrad/Zant,其中Zant是帶天線諧振網(wǎng)絡(luò)的天線阻抗。Zant表示為:
(2)
當(dāng)天線處于諧振狀態(tài)時(shí),效率η可以表示為:
(3)
在其他頻率點(diǎn)時(shí)效率為:
(4)
非諧振頻率點(diǎn)的天線效率η要低于最大效率ηres,因?yàn)榇藭r(shí)的天線輸入阻抗Zant要么是容性的,要么是感性的。
最大化天線尺寸
為了恢復(fù)所傳輸?shù)纳漕l信號(hào),天線必須從電磁波里收集到盡可能多的能量,并高效地將電磁波能量轉(zhuǎn)換成通過Rrad的電壓。收集到的能量多少受制于便攜式設(shè)備所使用天線的可用空間和大小。對(duì)于傳統(tǒng)的耳機(jī)天線來說,它的長(zhǎng)度可達(dá)到調(diào)頻信號(hào)的四分之一波長(zhǎng),能收集到足夠的能量并轉(zhuǎn)換成內(nèi)部LNA可用的電壓。在這種情況下,最大化天線效率就不那么重要。
不過,由于便攜式設(shè)備正變得更小更薄,留給嵌入式調(diào)頻天線的空間已變得非常有限。雖然已盡量增加天線尺寸,但嵌入式天線收集到的能量仍非常小。因此在既不犧牲性能、又要使用較小的天線的情況下,提高天線效率η就變得非常重要。
利用可調(diào)匹配網(wǎng)絡(luò),使調(diào)頻頻段上的效率最大化
大多數(shù)國(guó)家的調(diào)頻廣播頻段的頻率范圍是87.5MHz到108.0MHz。日本的調(diào)頻廣播頻段是76MHz到90MHz。在一些東歐國(guó)家,調(diào)頻廣播頻段是65.8MHz到74MHz。為了適應(yīng)全球所有的調(diào)頻頻段,調(diào)頻接收系統(tǒng)需要有40MHz的帶寬。傳統(tǒng)解決方案通常是將天線調(diào)諧在調(diào)頻頻段的中心頻率。然而就如上述公式表明的那樣,天線系統(tǒng)的效率是頻率的函數(shù)。效率在諧振點(diǎn)達(dá)到最大值,當(dāng)頻率偏離諧振頻率時(shí),效率將下降。值得注意的是,由于全球調(diào)頻頻段的帶寬達(dá)40MHz,當(dāng)頻率遠(yuǎn)離諧振頻率點(diǎn)時(shí)天線效率將有顯著下降。
例如,設(shè)定一個(gè)固定諧振頻率98MHz,那么在該頻率點(diǎn)可取得很高的效率,但其他頻率點(diǎn)的效率將有顯著下降,從而劣化了遠(yuǎn)離諧振頻率點(diǎn)時(shí)的調(diào)頻性能。
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 一種FM收音機(jī)接收機(jī)解決方案 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 手機(jī)天線設(shè)計(jì)中降低降低SAR 的方法研究 appeared first on 東莞市皇捷通訊科技有限公司.
]]>隨著信息技術(shù)的發(fā)展,大眾在享受無線通信設(shè)備帶來的各種便利之時(shí),也日益關(guān)注無線通信終端的電磁輻射對(duì)人體健康的影響。在手機(jī)天線的研發(fā)以及測(cè)試領(lǐng)域,天線工程師除了關(guān)注TRP(全向輻射功率),TIS(總?cè)蜢`敏度),RL(回波損耗),Efficiency(效率)以外,還很非常注重另一指標(biāo)—SAR(Specific Absorption Rate)。
SAR 的大小表明了手機(jī)電磁輻射對(duì)人體健康影響的大小。在手機(jī)天線的設(shè)計(jì)中,主要關(guān)注的是無線通信終端的電磁輻射對(duì)人類頭部的影響。SAR 值的大小和手機(jī)的輻射功率密切相關(guān),通常SAR 值的大小與TRP 成正比,在設(shè)計(jì)中,TRP 和SAR 本身就是一對(duì)矛盾,因此,在設(shè)計(jì)中,需很好地平衡兩者的關(guān)系。
二、SAR 概述與測(cè)試簡(jiǎn)介
SAR定義是生物體單位時(shí)間(s)、單位質(zhì)量(kg)所吸收的電磁輻射(照射)能量,它在美國(guó)和歐洲關(guān)于SAR有不同的標(biāo)準(zhǔn),美國(guó)是1g的標(biāo)準(zhǔn),歐洲是10克的標(biāo)準(zhǔn),單位均是W/Kg或mw/g。SAR分為局部SAR和平均SAR。由于我們主要關(guān)注的是局部SAR,在這里給出局部SAR的相關(guān)表達(dá)方法:
E ——組織內(nèi)電場(chǎng)強(qiáng)度的值,單位是伏每米;
σ——介質(zhì)導(dǎo)電率,單位是西門子每米;
ρ——組織密度,單位是千克每立方米;
C——組織的比熱容;
——組織內(nèi)初始時(shí)刻溫度對(duì)時(shí)間的微分,單位開爾文每秒。
SAR測(cè)量系統(tǒng)主要由人體模型、電子測(cè)量?jī)x器、掃描定位系統(tǒng)和被測(cè)設(shè)備夾具等組成。測(cè)量通過自動(dòng)定位的迷你小型場(chǎng)強(qiáng)探頭測(cè)量模型內(nèi)部的電場(chǎng)分布來進(jìn)行。根據(jù)測(cè)得的場(chǎng)強(qiáng)值可以計(jì)算出SAR的分布以及峰值空間平均SAR。在對(duì)手機(jī)進(jìn)行SAR測(cè)試的時(shí)候,如果天線可以伸縮,兩個(gè)位置都要測(cè)試,也就是全伸出和全收縮的位置;可翻(滑)蓋移動(dòng)電話,如果開蓋和合蓋時(shí)均能打電話,則兩種狀態(tài)都要進(jìn)行測(cè)試。
圖1、SAR 實(shí)驗(yàn)室
三、降低SAR 的方法
在工程測(cè)試中,手機(jī)SAR 值主要是測(cè)試它的峰值是否超標(biāo),因此減小SAR 值的原理是在于如何把電流分布均勻化。在手機(jī)設(shè)計(jì)中SAR 是一個(gè)綜合的問題,在設(shè)計(jì)手機(jī)天線時(shí)既要要求高的TRP 又要有低的SAR 值,這需要在手機(jī)整機(jī)設(shè)計(jì)初期對(duì)天線有很好的評(píng)估,尤其是PCB 布板、天線位置和周圍器件的放置對(duì)天線都有較大的影響。
在手機(jī)設(shè)計(jì)中,有很多方法可以降低SAR 值。在設(shè)計(jì)初期,首先要求布板工程師、結(jié)構(gòu)工程師充分考慮PCB 的設(shè)計(jì)、天線的位置、speaker、micro、vibrator、battery等對(duì)天線影響大的器件的合理放置,在設(shè)計(jì)過程中可以通過調(diào)試PCB 上的熱點(diǎn)來降低SAR 值;在設(shè)計(jì)天線時(shí)一般采用PIFA 天線,它具有較低的SAR 值,這是因?yàn)镻IFA 天線和PCB 之間有較大的區(qū)域并且和PCB 地構(gòu)成回路,電流能較均勻地分布,這樣SAR 便不會(huì)產(chǎn)生較強(qiáng)的Peak 值;在設(shè)計(jì)后期,可以通過降低發(fā)射功率來降低SAR 值,從理論分析看,手機(jī)的發(fā)射功率降低1dB,SAR 數(shù)值大約會(huì)降低0.3W/Kg,他們是成正比的,但是在降低發(fā)射功率后,會(huì)影響手機(jī)的發(fā)射效率,因此在手機(jī)設(shè)計(jì)中要權(quán)衡利弊。
降低SAR 值的的最好的方向是:保證其發(fā)射功率,改變天線的方向圖,減小面向人頭部峰值。本文采用TDK 公司的一種叫軟磁性片的材料可以很容易地達(dá)到這種目的,如圖2 所示,它是由磁性材料和樹脂制成的電磁屏蔽材料。該材料具有高磁導(dǎo)率,高電阻率等特點(diǎn)。將這種材料貼到手機(jī)鍵盤和PCB之間,有效地改變了天線的近場(chǎng),改變天線的輻射強(qiáng)度。本文通過仿真優(yōu)化,找出該磁性片最佳的尺寸和放置位置,從而降低手機(jī)面向頭部的電磁輻射,達(dá)到降低SAR 值目的。
圖2、磁性片樣品
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 手機(jī)天線設(shè)計(jì)中降低降低SAR 的方法研究 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 802.11b/g垂直極化全向天線的制作過程詳解 appeared first on 東莞市皇捷通訊科技有限公司.
]]>很多網(wǎng)站都有制作2.4GHz全向天線的詳細(xì)說明,但是,這些天線做起來相當(dāng)復(fù)雜,要用很多切割非常精確的小段同軸電纜。同時(shí)你還必須知道所使用的同軸電纜的數(shù)據(jù),因?yàn)榇蟛糠殖叽缫源藶橐罁?jù)。
有些改進(jìn)的同軸電纜全向天線是用黃銅棒和黃銅管制造的,但是它同樣需要高精度的工藝。
不久前,做了一個(gè)8單元的同軸電纜天線。經(jīng)測(cè)試有將近8dBi增益。制作花了N多個(gè)小時(shí),但是機(jī)械強(qiáng)度卻不很理想。于是我就給同軸電纜天線纏上加固木條,并把它裝進(jìn)25mm的電線導(dǎo)管。當(dāng)一個(gè)朋友告訴我,有人把一段銅線彎曲成一個(gè)簡(jiǎn)單的天線,就有6dBi的增益,我的好奇心被激發(fā)起來了。
這個(gè)天線有一些超越同軸電纜天線的優(yōu)點(diǎn),降低了制作難度,天線更小、更堅(jiān)固。
雖然6dBi的增益小于8單元的同軸電纜天線,但是可以通過增加元件的數(shù)量來改進(jìn)。每?jī)蓚€(gè)單元可以增加3dBi的增益。
所需器件:
需要的原料
· 大約300mm長(zhǎng),截面2.5平方毫米的銅線
· N型母接頭
· 長(zhǎng)250mm ,外徑20mm的輕型電線導(dǎo)管
· 2 個(gè)適用于20mm電線導(dǎo)管的端蓋
當(dāng)然,裝配天線還需要:
· 2 個(gè)適用于20mm 電線導(dǎo)管的夾具
或者:
· 金屬支架
我用的是一段截面2.5平方毫米的廢舊銅線。這種銅線的直徑大約是1.6mm,不需要借助任何特殊工具就能彎曲到需要的形狀。
還需要用N型母接頭把天線和無線裝置連接起來。也可以用其它接頭(比如:TNC,SMA等等),這取決于你的連接線端的接頭。我用的是下面的這種
設(shè)計(jì):
一段銅線,在特定位置彎出一些圓環(huán),就組成了天線。各部分的尺寸是非常重要的,參考下面這張圖:
底部是1/2波長(zhǎng),中間部分是3/4波長(zhǎng),頂部要稍微小于3/4波長(zhǎng),以便減少電容的影響。
802.11b 標(biāo)準(zhǔn)使用2.412MHz 到2.484MHz 頻率范圍,其中心頻率的1/2波長(zhǎng)是61mm,3/4波長(zhǎng)是91.5mm。這些尺寸看來和外面賣的天線一樣。
制作:
先從天線的底部做起,在N 型接頭上焊接一段銅絲。從N接頭的頂端量出1/2波長(zhǎng),做第一個(gè)圓環(huán)。
注意,圓環(huán)要和銅線錯(cuò)位,使銅線保持一條直線。
然后量出3/4波長(zhǎng),再做第二個(gè)圓環(huán)。頂部留夠需要的長(zhǎng)度,剪斷銅線。
如果你準(zhǔn)備用20mm直徑的電線導(dǎo)管,那么一定要保證圓環(huán)的直徑等于或小于15mm,這樣才能把它裝到電線導(dǎo)管里(20mm 輕型電線導(dǎo)管的內(nèi)徑是16mm)。
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 802.11b/g垂直極化全向天線的制作過程詳解 appeared first on 東莞市皇捷通訊科技有限公司.
]]>The post 微帶天線簡(jiǎn)介 appeared first on 東莞市皇捷通訊科技有限公司.
]]>常用的微帶天線是在一個(gè)薄介質(zhì)基片上,一面附上金屬薄層作為接地板,另一面用光刻腐蝕等方法做出一定形狀的金屬貼片,利用微帶線、同軸探針或電磁耦合對(duì)貼片饋電,這構(gòu)成了微帶天線。如圖1。
圖1 矩形微帶天線
微帶天線的性能:微帶天線一般應(yīng)用在1GHz–50GHz,特殊的微帶天線也可用在幾十兆赫。
2.微帶天線優(yōu)缺點(diǎn)
微帶天線是二十世紀(jì)中后期逐漸發(fā)展起來的一種新型天線,由于其具有尺寸小、成本低、結(jié)構(gòu)牢固和工藝簡(jiǎn)單等優(yōu)點(diǎn),同時(shí)還可方便的實(shí)現(xiàn)線極化或圓極化以及雙頻工作,因而被廣泛應(yīng)用于通信、廣播和航空航天等領(lǐng)域。
和常用的天線相比,它有如下一些優(yōu)點(diǎn):
體積小,重量輕,低剖面,能有與載體共形,并且除了在饋電點(diǎn)處要開出引線孔外,不破壞載體的機(jī)械結(jié)構(gòu),這對(duì)于高速飛行器特別有利。電性能多樣化。不同設(shè)計(jì)微帶元,其最大輻射方向可以從邊射到端射范圍內(nèi)調(diào)整,易于得到各種極化,特殊設(shè)計(jì)的微帶元還可以在雙頻或多頻工作。能和有源器件,電路集成為統(tǒng)一的組件,因此適合大規(guī)模生產(chǎn),簡(jiǎn)化了整機(jī)的制作和調(diào)試,大大降低了成本。
缺點(diǎn)是:
頻帶窄,主要是諧振式微帶天線。損耗較大,因此效率較低,這類似于微帶電路。特別是行波型微帶天線,在匹配負(fù)載上有較大的損耗。單個(gè)微帶天線的功率容量較小。介質(zhì)基片對(duì)性能影響大。由于工藝條件的限制,批量生產(chǎn)的介質(zhì)基片的均勻和一致性還有欠缺。
3.微帶天線應(yīng)用
近幾年來,人們研究和設(shè)計(jì)了許多改進(jìn)型的微帶天線,如在微帶貼片和接地金屬板間加入一根很細(xì)的金屬連接針,或在介質(zhì)板或接地板上蝕刻出周期性結(jié)構(gòu)從而產(chǎn)生出電磁帶隙等等。
由于微帶天線有獨(dú)特的優(yōu)點(diǎn)而缺點(diǎn)隨著科技的進(jìn)步正在研究克服,因此它有廣闊的應(yīng)用前景。一般說來,它在飛行器上的應(yīng)用處于優(yōu)越地位,可用于衛(wèi)星通訊、天線電高度表、導(dǎo)彈測(cè)控設(shè)備、導(dǎo)引頭、環(huán)境監(jiān)測(cè)設(shè)備、共形相控陣等。微帶天線在地面設(shè)備上應(yīng)用也有其優(yōu)勢(shì)方面。特別是較低功率的各種民用設(shè)備,例如醫(yī)用徽波探頭, 直播衛(wèi)星的接收陣以及當(dāng)前的藍(lán)牙設(shè)備的收發(fā)天線等,由于 微帶天線能集成化,它在毫米波段的優(yōu)勢(shì)是明顯的。皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國(guó)臺(tái)灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動(dòng)組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗(yàn)設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
The post 微帶天線簡(jiǎn)介 appeared first on 東莞市皇捷通訊科技有限公司.
]]>