大規(guī)模MIMO的原型制作
對無線數(shù)據(jù)的無線需求不斷促使研發(fā)人員尋找新的技術(shù)來擴(kuò)大無線數(shù)據(jù)容量和網(wǎng)絡(luò)能力。業(yè)界專家們普遍認(rèn)為,即使當(dāng)前和規(guī)劃中的基礎(chǔ)設(shè)施全面展開,數(shù)據(jù)需求仍然會繼續(xù)超過現(xiàn)有的能力,辯論已經(jīng)從這“是否”會發(fā)生轉(zhuǎn)為“何時”發(fā)生。無線服務(wù)提供商紛紛計劃將網(wǎng)絡(luò)升級到4G LTE、LTEAdvanced(LTE-A),以及更先進(jìn)的技術(shù),推出微蜂窩覆蓋、異構(gòu)網(wǎng)絡(luò)、載波聚合、3GPP路線圖等創(chuàng)新方案。然而很明顯,當(dāng)前技術(shù)軌跡產(chǎn)生的容量斜坡仍然比需求線平坦。面對此挑戰(zhàn),3GPP 標(biāo)準(zhǔn)實體近來提出了數(shù)據(jù)容量“到2020 年增長1000 倍”的目標(biāo),以滿足演進(jìn)性或革命性創(chuàng)意的需要。
這種概念要求基站部署極大規(guī)模的天線陣列,可能包含成百上千的收發(fā)器。此概念稱為大規(guī)模MIMO。的確,大規(guī)模MIMO 脫離了當(dāng)前的網(wǎng)絡(luò)拓補(bǔ),可能是解決我們所面對的無線數(shù)據(jù)挑戰(zhàn)的關(guān)鍵;然而,在認(rèn)知大規(guī)模MIMO 廣泛部署的效能和/ 或可行性的過程中,出現(xiàn)了一個值得關(guān)注的問題,有人會創(chuàng)建一個原型,只為確定它是否真正行之有效嗎?畢竟,創(chuàng)建一個具有上千天線的原型會帶來若干工程上的挑戰(zhàn),另外還有其他不可忽視的問題,即成本和時間。
圖1. 2 天線MIMO 收發(fā)器。
MIMO背景
MIMO 依賴多路來提高無線數(shù)據(jù)鏈路的可靠性以及有效數(shù)據(jù)率,通常使用數(shù)根獨立天線獲得多個數(shù)據(jù)流。多路傳播是通信系統(tǒng)面臨的巨大挑戰(zhàn),實踐中采用MIMO,運用空間- 時間編碼和/ 或空間分集等多種技術(shù)。4G 移動通信標(biāo)準(zhǔn)LTE-A 規(guī)定MIMO 組態(tài)最多使用8 根天線。IEEE 802.11n/ac 標(biāo)準(zhǔn)以及這些標(biāo)準(zhǔn)的實際商業(yè)化均普遍使用MIMO。
基本上,更多天線會給傳播通道帶來更高的自由度,從而在數(shù)據(jù)率和/ 或鏈路可靠性方面擁有更高的性能。然而,總體數(shù)據(jù)率仍然受到香農(nóng)理論的限制。在多個用戶組成的網(wǎng)絡(luò)中,增大總體網(wǎng)絡(luò)吞吐量的一種方法是多用戶MIMO(MU-MIMO),其中,多個用戶可以同時訪問同一時頻資源,但是通過多根天線產(chǎn)生的多“空間維度”實現(xiàn)隔離。
更多天線,更大容量,更高的可靠性
增大MU-MIMO 的規(guī)模, 稱為大規(guī)模MIMO,可以提供更大的網(wǎng)絡(luò)容量、更高的可靠性,并通過降低一個蜂窩或服務(wù)地區(qū)的總發(fā)射功率而提高大規(guī)模MIMO 基站的能量效率。理論上,每根天線的發(fā)射功率能夠低于以相同數(shù)據(jù)率為指定蜂窩或者地區(qū)服務(wù)的單根天線的發(fā)射功率。即,總功率為:
PTotMM ~ PT NT
其中,PTotMM 是每個地區(qū)的總傳輸功率,PT 是每根天線的功率,NT 是發(fā)射天線的數(shù)目。其中,PTotMM 低于單天線系統(tǒng)的PTot。與單天線系統(tǒng)相比,為了達(dá)到相同的可靠性和/ 或吞吐量,由于大規(guī)模MIMO 基站能夠憑借其更高的自由度而將發(fā)射的能量聚焦于目標(biāo)用戶,所以大規(guī)模MIMO 蜂窩拓補(bǔ)能夠降低分區(qū)地域的總發(fā)射功率。另外,當(dāng)使用多根天線時,從發(fā)射器至接收器的正確位發(fā)射概率會增大,因為鏈路中斷概率~ 1 / SNR NT NR。
其中,SNR 是信噪比,NR 是接收天線的數(shù)目,NT 是發(fā)射天線的數(shù)目。由于此關(guān)系,當(dāng)系統(tǒng)中的天線數(shù)目增加時,鏈路中斷概率會降低,從而提高了通信鏈路可靠性。[1]
大規(guī)模MIMO 天線陣列基于這里所述的基本概念,按照理論,數(shù)百倍規(guī)模的天線部署將獲得比當(dāng)前MIMO 點對點部署更高的效率。具體來說,憑借數(shù)百根天線,天線孔徑和部署網(wǎng)格均有精細(xì)的多的分辨率。配合波束成形,能夠更加精細(xì)地控制天線波瓣,以降低通道中的能量。
大規(guī)模MIMO 系統(tǒng)也有其挑戰(zhàn)。一個挑戰(zhàn)是尋找從接收器到發(fā)射器的通道狀態(tài)信息通信方法,以進(jìn)行預(yù)編碼。鑒于有數(shù)百根天線,通過導(dǎo)頻信號來推論通道狀態(tài)在實踐中是不可行的。因此,目前實現(xiàn)的大規(guī)模MIMO只能實際使用依賴于通道互易的時分雙工(TDD)系統(tǒng),然而要確定此方法的可行性,還需要進(jìn)行更多研究。另外,一些初步研究提出,系統(tǒng)中的熱噪聲對于如此之多的天線來說不必過于關(guān)注,并且干擾器的影響成為更大的問題。這些挑戰(zhàn)以及其他挑戰(zhàn),可以在開發(fā)出有效的原型之后使用實際波形來進(jìn)行研究。
2. M 用戶N 天線大規(guī)模MIMO 系統(tǒng)。
圖3. 典型1×1 軟件定義無線電體系結(jié)構(gòu)。
大規(guī)模MIMO系統(tǒng)的原型制作
制作大規(guī)模MIMO 系統(tǒng)的原型需要預(yù)先進(jìn)行許多工作,以便仔細(xì)、恰當(dāng)?shù)卦O(shè)計實際運作系統(tǒng)。大多數(shù)研究人員會發(fā)現(xiàn),甚至制作只有2 天線的最低組態(tài)MIMO 收發(fā)器系統(tǒng)也是極具挑戰(zhàn)性的(參見圖1)。為設(shè)計大規(guī)模MIMO 原型,首先繪制系統(tǒng)草圖(參見圖2)。在本練習(xí)中,基站處的天線數(shù)目N 為128,從而獲得128×128 MIMO 組態(tài)。組態(tài)假設(shè)M個移動用戶使用SISO 天線。
在設(shè)計大規(guī)模MIMO 系統(tǒng)時,需要考慮許多事項,包括發(fā)射功率、相鄰?fù)ǖ栏蓴_、頻譜罩等RF 系統(tǒng)參數(shù)。然而,大規(guī)模MIMO 系統(tǒng)需要考慮的一個關(guān)鍵參數(shù)是每根天線的數(shù)字?jǐn)?shù)據(jù)吞吐量。從圖中可知,系統(tǒng)最具挑戰(zhàn)性的一個方面是將所有接收到的樣本聚合到公共處理子系統(tǒng)內(nèi)。與使用SISO 無線電的簡單發(fā)射和接收通信不同,大規(guī)模MIMO 要求發(fā)射和接收元件之間擁有高速數(shù)據(jù)吞吐,以及高基帶,并且其數(shù)量級高于目前部署的系統(tǒng)。
可以選擇在靠近天線處的節(jié)點,以分布方式處理數(shù)據(jù)流,但是為了恢復(fù)從不同用戶處收到的信號,或者有效地為不同用戶進(jìn)行信號預(yù)編碼,必須將從各個天線接收到的數(shù)據(jù)流聚集在一個公共位置,以獲得最優(yōu)性能。通過仔細(xì)觀察吞吐量和數(shù)據(jù)要求,我們將系統(tǒng)分成基本元件。這樣,我們就可以在原型的實際構(gòu)建中量化數(shù)據(jù)率,并在系統(tǒng)設(shè)計、集成、功率和成本之間取得平衡。
基線系統(tǒng)參數(shù)
典型SISO 無線電如圖3 所示。在該圖中,RF 信號下變頻或混合,濾波,放大,然后轉(zhuǎn)化為數(shù)字?jǐn)?shù)據(jù)。發(fā)射過程的次序則相反。大規(guī)模MIMO系統(tǒng)包含數(shù)百個這種基本SISO 元。為了使用現(xiàn)貨供應(yīng)設(shè)備,以降低成本和加快原型開發(fā),假設(shè)每個同相正交樣本均為16 位。位數(shù)決定了動態(tài)范圍,實際上對于原型來說過好了。減少分辨率位數(shù)會顯著降低數(shù)據(jù)吞吐量,特別是在聚集極多通道的時候。雖然16 位會增加數(shù)據(jù)路徑,并最終增加數(shù)據(jù)吞吐量要求——位數(shù)更多會導(dǎo)致數(shù)據(jù)路徑加寬和數(shù)據(jù)吞吐量要求增加——然而,現(xiàn)貨供應(yīng)組件和編程體系結(jié)構(gòu)不需要進(jìn)行自定義就能夠輕
松處理16 位樣本。
接下來考慮采樣率。接收鏈中的每個模數(shù)轉(zhuǎn)換器(ADC)均必須以高于尼奎斯特通道帶寬的速率對下變頻波形進(jìn)行采樣。本例以LTE 作為基線,普通移動通信場景,每個轉(zhuǎn)換器均以30.72 MS/s 的采樣率對接收到的波形進(jìn)行采樣。實際上,轉(zhuǎn)換器可以對信號進(jìn)行過采樣,以提高分辨率,但是這會增加信號處理量,以便將數(shù)據(jù)率轉(zhuǎn)換到標(biāo)準(zhǔn)信號處理模塊可以接受的數(shù)據(jù)流。數(shù)據(jù)吞吐量使用下述方程得到:(2 個樣本)(16 位/ 樣本或者2字節(jié)/ 秒)(采樣率)
對于上例:
(2 個樣本)(2 字節(jié)/ 秒)(30.72)= 122.88 MB/s對于上例系統(tǒng),一個通道的聚集數(shù)據(jù)吞吐量等于122.88 MB/s。為擴(kuò)大到大規(guī)模MIMO 系統(tǒng),可以按照下文所述計算有效速率:總系統(tǒng)吞吐量(TST)=(吞吐率/ 通道)(天線數(shù)目)TST =(122.88 MB/s)(128)TST = 15.7 GB/s
這樣,如果所有通道均同時發(fā)射或接收,那么中央處理系統(tǒng)的數(shù)據(jù)吞吐量將為15.7 GB/s。另外,將所有這些數(shù)據(jù)聚集到中央處理系統(tǒng)中,還要求處理引擎能夠接受此龐大的數(shù)據(jù)量,并且能夠進(jìn)一步處理數(shù)據(jù),以便生成通信鏈路。上述簡要分析揭示了兩個挑戰(zhàn)。首先,極少(如果有的話)低成本市售技術(shù)能夠滿足這些要求。其次,原型的數(shù)據(jù)量要求開發(fā)備選信號處理鏈分割技術(shù),包括分布式實現(xiàn)和并行實現(xiàn)。
通過審查可用的原型制作技術(shù),我們提出了一種可以用作大規(guī)模MIMO 原型構(gòu)建數(shù)據(jù)框架的高速串行總線的簡要研究。
表1 概述了目前的一些市售高速總線技術(shù)。當(dāng)然還有其他總線,然而上表提供的是目前常用的許多標(biāo)準(zhǔn)而非專有總線技術(shù)的指南。另外,這些總線技術(shù)已經(jīng)用于許多模塊化體系結(jié)構(gòu),例如PXIe,基本上基于PCIe 標(biāo)準(zhǔn)。應(yīng)該考慮的一個規(guī)格是潛伏時間。潛伏時間是指發(fā)射與接收操作之間的周轉(zhuǎn)時間。如果原型是用于單向鏈路,那么潛伏時間不是特別重要。然而,對于真正的TDD 大規(guī)模MIMO 原型,必須考慮潛伏時間,因為周期時間比無線通道的相干時間更短,從而下行鏈路預(yù)編碼不是基于已經(jīng)過時的通道信息,這是至關(guān)重要的。上文給出的潛伏時間規(guī)格為近似值。然而,一般來說,以太網(wǎng)的潛伏時間并非決定性的,可能會發(fā)生極大的變化。另一方面,以太網(wǎng)的實現(xiàn)一般成本較低。
應(yīng)該指出,PCIe Gen 3 實現(xiàn)剛剛在市場上出現(xiàn),實際吞吐數(shù)據(jù)測量值并不可用。另外應(yīng)該指出,雖然基本提供了最大/ 峰值數(shù)據(jù)率,然而由于成本、IP 核的尺寸,以及功率等原因,實際實現(xiàn)了總線的典型實現(xiàn)是不同的。所提供的典型數(shù)目僅供參考,因為極少的(如果有的話)實現(xiàn)達(dá)到了所發(fā)布的最大速率。
圖4 所示是一個使用PXIe 的系統(tǒng)配置實例。在此組態(tài)中,總共使用了10 塊底板來實現(xiàn)128 根天線的大規(guī)模MIMO 系統(tǒng)。系統(tǒng)用2 塊“主”底板來聚集數(shù)據(jù),用8 塊底板來安裝128 個能夠在蜂窩帶進(jìn)行發(fā)射和接收的收發(fā)器(NI 5791 RF 收發(fā)器)。數(shù)據(jù)基干使用PCI Express Gen 2 ×8,通過合適的分割輕松采集和發(fā)射20MHz RF 帶寬數(shù)據(jù)。[2,3]
皇捷通訊的gsm天線、wifi天線、uhf天線、vhf天線、電視天線、電子連接器生產(chǎn)線引進(jìn)日本、中國臺灣高端生產(chǎn)設(shè)備,保證產(chǎn)品具有穩(wěn)定、優(yōu)良的品質(zhì)。公司生產(chǎn)設(shè)備包括注塑成型設(shè)備、五金沖壓設(shè)備、自動組裝設(shè)備、模具制造設(shè)備、RF剝線設(shè)備及品質(zhì)檢驗設(shè)備等。我們擁有高端的技術(shù)研發(fā)和制造能力,可以根據(jù)客戶需求定制產(chǎn)品,并調(diào)整和提高生產(chǎn)效率。保證穩(wěn)定、精確的交貨期和快速的樣品確認(rèn)。
您將是第一位評論人!