天線輻射、散射近場測量及近場成像技術(shù)的研究進(jìn)展
眾所周知,在離開被測目標(biāo)3λ~5λ(λ為工作波長)距離上測量該區(qū)域電磁場的技術(shù)稱為近場測量技術(shù)。如果被測目標(biāo)是輻射器,則稱為輻射近場測量;若被測目標(biāo)是散射體,則稱為散射近場測量;對測得散射體的散射近場信息進(jìn)行反演或逆推就能得到目標(biāo)的像函數(shù),這就是目標(biāo)近場成像。但是,截止目前為止,關(guān)于輻射、散射近場測量以及近場成像技術(shù)溶為一體的綜述性文章還未見到公開的報(bào)導(dǎo),這對從事這方面研究的學(xué)者無疑是一種遺憾。為使同行們能全面地了解該技術(shù)的發(fā)展動(dòng)態(tài),該文概述了近幾十年來關(guān)于輻射、散射近場測量及近場成像技術(shù)前人所做的工作及其最新進(jìn)展,并指出了未來研究的主要方向。
1、輻射近場測量
輻射近場測量是用一個(gè)已知探頭天線(口徑幾何尺寸遠(yuǎn)小于1λ)在離開輻射體(通常是天線)3λ~5λ的距離上掃描測量(按照取樣定理進(jìn)行抽樣)一個(gè)平面或曲面上電磁場的幅度和相位數(shù)據(jù),再經(jīng)過嚴(yán)格的數(shù)學(xué)變換計(jì)算出天線遠(yuǎn)區(qū)場的電特性。當(dāng)取樣掃描面為平面時(shí),則稱為平面近場測量;若取樣掃描面為柱面,則稱為柱面近場測量;如果取樣掃描面為球面,則稱為球面近場測量。其主要研究方法為模式展開法,該方法的基本思想為:空間任意一個(gè)時(shí)諧電磁波可以分解為沿各個(gè)方向傳播的平面波或柱面波或球面波之和;主要研究成果及進(jìn)一步要解決的問題如下所述。
1.1、輻射近場測量的發(fā)展現(xiàn)狀
輻射近場測量的研究起始于50年代,70年代中期處于推廣應(yīng)用階段(商品化階段)。目前,分布在世界各地的近場測量系統(tǒng)已有100多套[1]。該技術(shù)的基本理論[2~4]已基本成熟,這種測量方法的電參數(shù)測量精度比常規(guī)遠(yuǎn)場測量方法的測量精度要高得多,而且可全天候工作,并具有較高的保密性,因此,在軍用、民用中都顯示出了它獨(dú)特的優(yōu)越性。
1.2、輻射近場測量研究的主要成果
幾十年來,輻射近場測量的研究在以下4個(gè)方面取得了突破性的進(jìn)展:
(1)常規(guī)天線電參數(shù)的測量
天線近場測量可以給出天線各個(gè)截面的方向圖以及立體方向圖,可以分析出方向圖上的所有電參數(shù)(波束寬度、副瓣電平、零值深度、零深位置等)和天線的極化參數(shù)(軸比、傾角和旋向)以及天線的增益。
(2)低副瓣或超低副瓣天線的測量
天線方向圖副瓣電平在-28~-35 dB之間的天線稱為低副瓣天線;副瓣電平小于-40 dB的天線稱為超低副瓣天線。對它們的測量要用到“零探頭”技術(shù)[5],據(jù)文獻(xiàn)報(bào)導(dǎo),副瓣電平在-40 dB以上時(shí),測量精度為±3 dB,副瓣電平為-55 dB時(shí),測量精度為±5 dB[6]。
(3)天線口徑場分布診斷
天線口徑場分布診斷是通過測量天線近區(qū)場的分布逆推出天線口徑場分布,從而判斷出口徑場畸變處所對應(yīng)的輻射單元,這就是天線口徑分布診斷的基本原理。該方法對具有一維圓對稱天線口徑分布的分析是可靠的,尤其對相控陣天線的分析與測量已有了充分的可信度[7]。
(4)測量精度及誤差分析
輻射近場測量的研究與誤差分析的探討是同時(shí)進(jìn)行的,研究結(jié)果表明:輻射近場測量的主要誤差源為18項(xiàng),大致分為4個(gè)方面,即探頭誤差、機(jī)械掃描定位誤差、測量系統(tǒng)誤差以及測量環(huán)境誤差。對于平面輻射近場測量的誤差分析已經(jīng)完成,計(jì)算機(jī)模擬及各項(xiàng)誤差的上界也已給出;柱面、球面輻射近場測量的誤差分析尚未完成[8]。
1.3、輻射近場測量的可信域
對于平面輻射近場測量而言,由基本理論可知,在θ=-90°或90°(θ為場點(diǎn)偏離天線口面法線方向的方向角)時(shí),這種方法的精度明顯變差,因此平面輻射近場測量適用于天線方向圖為單向筆形波束天線的測量,可信域(-θ,θ)中的θ值與近場掃描面和取樣間距有如下關(guān)系(一維情況):
θ=arctg[(L-X)/2d] ,(1)
式中L為掃描面的尺寸;X為天線口徑面的尺寸;d為掃描面到天線口徑面的距離。
柱面輻射近場測量能夠計(jì)算天線全方位面的輻射方向圖,但在θ=-90°或90°時(shí),柱面波展開式中漢克爾函數(shù)已無意義,所以,柱面輻射近場測量適用于天線方向圖為扇形波束天線的測量。
球面輻射近場測量能夠計(jì)算除球心以外天線任意面上任意點(diǎn)的輻射場,但測量及計(jì)算時(shí)間都較長[8]。
1.4、輻射近場測量需要解決的問題
輻射近場測量的基本理論雖然已經(jīng)成熟,且在實(shí)用中也取得了較多的研究成果,但對以下問題還應(yīng)進(jìn)行進(jìn)一步的探討研究:
(1)考慮探頭與被測天線多次散射耦合的理論公式
在前述的理論中,所有的理論公式都是在忽略多次散射耦合條件下而得出的,這些公式對常規(guī)天線的測量有一定的精度,但對低副瓣或超低副瓣天線測量就必需考慮這些因素,因此,需要建立嚴(yán)格的耦合方程。
(2)近場測量對天線口徑場診斷的精度和速度
近場測量對常規(guī)陣列天線口徑場的診斷有較好的診斷精度,但對于超低副瓣天線陣列而言,診斷精度和速度還需要進(jìn)一步研究。
(3)輻射近場掃頻測量的研究
就一般情況而言,天線都在一個(gè)頻帶內(nèi)工作,因此,各項(xiàng)電指標(biāo)都是頻率的函數(shù),為了快速獲得各個(gè)頻率點(diǎn)的電指標(biāo),就需要進(jìn)行掃頻測量。掃頻測量的理論與點(diǎn)頻的理論完全一樣,只是在探頭掃描時(shí),收發(fā)測量系統(tǒng)作掃頻測量。
您將是第一位評論人!